A Finite Element-Phase Field Study of Solid State Phase Transformation: Coarsening of Coherent Precipitates and Instability of Multilayer Thin Films
Abstract
Governing equations for solid state phase transformation are derived by coupling Cahn-Hilliard type of phase field model to elasticity equations. The governing equations include 2nd order partial differential equations for elasticity coupled with a 4th order evolution partial differential equation for the conserved phase field variable. A mixed order finite element model is developed for the computations with C0 interpolation functions for displacement and C1 interpolation functions for the phase field variable. Developed finite element-phase field model is used to study coarsening of systems of coherent particles and also investigate morphological instabilities of multilayer thin films in solid state binary systems. It was shown that compositional mismatch elastic stresses in precipitates-matrix systems and multilayer thin films significantly affect the instability of these systems and alter the kinetics of transformations.
Recommended Citation
M. Asle Zaeem et al., "A Finite Element-Phase Field Study of Solid State Phase Transformation: Coarsening of Coherent Precipitates and Instability of Multilayer Thin Films," Proceedings of the TMS 2011 - 140th Annual Meeting and Exhibition (2011, San Diego, CA), vol. 3, pp. 341 - 348, Minerals, Metals and Materials Society, May 2011.
The definitive version is available at https://doi.org/10.1002/9781118062173.ch42
Meeting Name
TMS 2011 - 140th Annual Meeting and Exhibition (2011: Feb. 27-Mar. 3, San Diego, CA)
Department(s)
Materials Science and Engineering
Keywords and Phrases
Binary systems; Coherent precipitates; Elastic stress; Elasticity equations; Field model; Field studies; Finite Element; Finite element models; Governing equations; Interpolation function; Mixed order; Morphological instability; Multi-layer thin film; Order evolution; Phase field models; Phase fields; Phase transformation; Solid state phase transformation; Elasticity; Equations of state; Film preparation; Finite element method; Interpolation; Linear transformations; Multilayer films; Partial differential equations; Phase interfaces; Phase transitions; Multilayers
International Standard Book Number (ISBN)
978-1118029473
Document Type
Article - Conference proceedings
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2011 Minerals, Metals and Materials Society, All rights reserved.
Publication Date
01 May 2011