Transformations and Cracks in Zirconia Films Leading to Breakaway Oxidation of Zircaloy
Abstract
Using combined Raman spectroscopy, atomic force microscopy and optical microscopy, this paper suggests that breakaway oxidation of Zircaloy is caused by the change of circumferential stress sign from compressive to tensile, which triggers catastrophic cracks to propagate from the oxide free surface toward the oxide-metal interface. The stress sign changes at a critical oxide thickness, which depends on the circumferential stress at the interface. This biaxial interfacial stress is promoted by a lattice expansion stress that accompanies the tetragonal to monoclinic crystal phase transition. In contrast with current research in the literature, this allotropic transformation is suggested to be beneficial, not detrimental, because it contributes to retard the thresholds for the change of circumferential stress sign, and thus breakaway oxidation. The tetragonal phase was revealed to localize at the interface and adopt the shape of prismatic isosceles triangles detected at early stages of oxidation. These growth morphologies are consistent with a cationic oxidation mechanism. Upon phase transition, the monoclinic variant quickly dominates the oxide scale above the interfacial regions and forces the overall oxidation to proceed by an anionic diffusion mechanism. The results of Raman spectroscopy compared well with those of atomic force microscopy.
Recommended Citation
H. El Kadiri and Z. N. Utegulov and M. Khafizov and M. Asle Zaeem and M. Mamivand and A. L. Oppedal and K. Enakoutsa and M. Z. Cherkaoui and R. H. Graham and A. Arockiasamy, "Transformations and Cracks in Zirconia Films Leading to Breakaway Oxidation of Zircaloy," Acta Materialia, vol. 61, no. 11, pp. 3923 - 3935, Elsevier Ltd, Jun 2013.
The definitive version is available at https://doi.org/10.1016/j.actamat.2013.02.052
Department(s)
Materials Science and Engineering
Keywords and Phrases
Allotropic transformations; Break-away oxidation; Breakaway; Circumferential stress; Diffusion mechanisms; Monoclinic crystals; Oxidation mechanisms; Oxide-metal interface; Atomic force microscopy; Crack initiation; Cracks; Optical microscopy; Phase transitions; Raman spectroscopy; Scale (deposits); Zirconia; Zirconium alloys; Cracking; Oxidation; Phase transformation
International Standard Serial Number (ISSN)
1359-6454
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2013 Elsevier Ltd, All rights reserved.
Publication Date
01 Jun 2013