Abstract
Two kinds of aqueous precursor solutions are used to synthesize Mn-Zn ferrite powders: (i) nitrate (NO) precursor-derived from solutions of Mn(NO3)2, Zn(NO3)2, and Fe(NO3)3; and (ii) acetate (AC) precursor-derived from solutions of Mn(CH3COOO)2, Zn(CHCH3COOO)2, and Fe(NO3)3. The composition of the powders synthesized from the precursor AC is very uniform, whereas powders derived from the precursor NO have Mn and Zn segregated on the particle surfaces. In addition, the powders synthesized from precursor AC are solid spherical particles with fine porosity, whereas many hollow and fragmented particles are observed in the powder derived from precursor NO. Overall, the properties of Mn-Zn ferrite cores prepared from the precursor AC are superior to those prepared from the precursor NO. The reasons for the differences are explained and described in detail. The AC precursor powders synthesized by spray pyrolysis produced Mn-Zn ferrite cores with good magnetic properties.
Recommended Citation
X. Zhao et al., "Preparation of Phase Homogeneous Mn-Zn Ferrite Powder by Spray Pyrolysis," Journal of Materials Research, Materials Research Society, Jan 1999.
The definitive version is available at https://doi.org/10.1557/JMR.1999.0412
Department(s)
Materials Science and Engineering
International Standard Serial Number (ISSN)
0884-2914
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 1999 Materials Research Society, All rights reserved.
Publication Date
01 Jan 1999