Analysis of Damping in Particle-reinforced Superplastic Zinc Composites
Abstract
The damping behavior of superplastic zinc (SPZ) participate composites with up to 42.5 vol pet spherical TiC particles (3 /im in diameter) was studied in the 25 °C to 330 °C temperature range using a low frequency torsion pendulum. The observed damping at room temperature was modeled as a combination of a diffusion-controlled dislocation relaxation and a grain boundary relaxation. Addition of TiC produced a lower dislocation damping contribution at room temperature, but this loss was offset by an increased contribution from the grain boundary relaxation. An increase in the elastic modulus was also observed for the composite. The validity of a theoretical model for predicting changes in the grain boundary relaxation peak temperature resulting from the introduction of large nondeforming particles was tested. This study demonstrates that grain sliding in SPZ alloys occurs by cooperative sliding of grain clusters containing three to five grains. The activation energy for this process was found to be 111 kJ/mole (1.15 eV), which is in agreement with previously published values for grain sliding in SPZ. A second internal friction peak at a temperature just below the eutectoid transformation temperature was also observed and this peak was associated with recrystallization.
Recommended Citation
J. Lu and D. C. Van Aken, "Analysis of Damping in Particle-reinforced Superplastic Zinc Composites," Metallurgical and Materials Transactions A, ASM International, Jan 1996.
The definitive version is available at https://doi.org/10.1007/BF02652350
Department(s)
Materials Science and Engineering
International Standard Serial Number (ISSN)
1073-5623
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 1996 ASM International, All rights reserved.
Publication Date
01 Jan 1996