A Class of Embedded DG Methods for Dirichlet Boundary Control of Convection Diffusion PDEs
Abstract
We investigated a hybridizable discontinuous Galerkin (HDG) method for a convection diffusion Dirichlet boundary control problem in our earlier work (Gong et al. SIAM J Numer Anal 56(4):2262—2287, 2018) and obtained an optimal convergence rate for the control under some assumptions on the desired state and the domain. In this work, we obtain the same convergence rate for the control using a class of embedded DG methods proposed by Nguyen et al. (J Comput Phys 302:674—692, 2015) for simulating fluid flows. Since the global system for embedded DG methods uses continuous elements, the number of degrees of freedom for the embedded DG methods are smaller than the HDG method, which uses discontinuous elements for the global system. Moreover, we introduce a new simpler numerical analysis technique to handle low regularity solutions of the boundary control problem. We present some numerical experiments to confirm our theoretical results.
Recommended Citation
G. Chen et al., "A Class of Embedded DG Methods for Dirichlet Boundary Control of Convection Diffusion PDEs," Journal of Scientific Computing, vol. 81, no. 2, pp. 623 - 648, Springer New York LLC, Nov 2019.
The definitive version is available at https://doi.org/10.1007/s10915-019-01043-9
Department(s)
Mathematics and Statistics
Research Center/Lab(s)
Center for High Performance Computing Research
Keywords and Phrases
Dirichlet Boundary Control; Elliptic Convection Diffusion Equations; Embedded Discontinuous Galerkin (EDG) Method; Error Analysis; Interior Embedded Discontinuous Galerkin (IEDG) Method
International Standard Serial Number (ISSN)
0885-7474; 1573-7691
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2019 Springer New York LLC, All rights reserved.
Publication Date
01 Nov 2019