"Nonparametric Density Estimation on Homogeneous Spaces in High Level I" by Jeff Lee, Robert Paige L. et al.
 

Nonparametric Density Estimation on Homogeneous Spaces in High Level Image Analysis.

Abstract

Thelandmarkdatareductionapproachinhighlevelimageanalysishasledtosignificantprogresstoscenerecognitionviastatisticalshapeanalysis(DrydenandMardia,1998).Whileanumberoffamiliesofsimilarityshapedensitieshaveprovenusefulindataanalysis,onlyafewpara-metricmodelshavebeenconsideredonlyrecentlyinthecontextofprojectiveshape(MardiaandPatrangenaru,2004),oraffineshape.Shapespacesofinteresthavethegeometricstructureofsymmetricspaces:planarsimilarityshapespacesarecomplexprojectivespaces(Kendall,1984),affineshapespacesarerealGrassmannmanifolds(Sparr,1992),andspacesofplanarprojectiveshapesofconfigurationsofpointsingeneralpositionareproductsofrealprojectivespaces(MardiaandPatrangenaru,2004).Therefore,datadrivendensityestimationofshapes,regardedaspointsonsymmetricspacesandarisingfromdigitizinglandmarksinimages,isnecessary.Recently,Pelletier(2004)consideredkerneldensityestimationon"general”Rie-mannianmanifolds;hisresultshoweverholdonlyinhomogeneousspaces.Thisissufficientforimageanalysis,sinceanysymmetricspaceishomogeneous.PelletierestimatorsgeneralizethedensityestimatorsoncertainhomogeneousspacesintroducedbyRuymgaart(1989),byH.Hendriks,J.H.M.JanssenandRuymgaart(1993),andbyLeeandRuymgaart(1998).Inthispaper,weproposeaclassofadjustedPelletierdensityestimators,onhomogeneousspaces,thatconvergeuniformlyandalmostsurelyatthesamerateasnaivekerneldensityestimatorsonEuclideanspaces

Department(s)

Mathematics and Statistics

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2004 Texas Tech University, All rights reserved.

Publication Date

01 Jan 2004

This document is currently not available here.

Share

 
COinS
 
 
 
BESbswy