Nonparametric Density Estimation on Homogeneous Spaces in High Level Image Analysis.
Abstract
Thelandmarkdatareductionapproachinhighlevelimageanalysishasledtosignificantprogresstoscenerecognitionviastatisticalshapeanalysis(DrydenandMardia,1998).Whileanumberoffamiliesofsimilarityshapedensitieshaveprovenusefulindataanalysis,onlyafewpara-metricmodelshavebeenconsideredonlyrecentlyinthecontextofprojectiveshape(MardiaandPatrangenaru,2004),oraffineshape.Shapespacesofinteresthavethegeometricstructureofsymmetricspaces:planarsimilarityshapespacesarecomplexprojectivespaces(Kendall,1984),affineshapespacesarerealGrassmannmanifolds(Sparr,1992),andspacesofplanarprojectiveshapesofconfigurationsofpointsingeneralpositionareproductsofrealprojectivespaces(MardiaandPatrangenaru,2004).Therefore,datadrivendensityestimationofshapes,regardedaspointsonsymmetricspacesandarisingfromdigitizinglandmarksinimages,isnecessary.Recently,Pelletier(2004)consideredkerneldensityestimationon"general”Rie-mannianmanifolds;hisresultshoweverholdonlyinhomogeneousspaces.Thisissufficientforimageanalysis,sinceanysymmetricspaceishomogeneous.PelletierestimatorsgeneralizethedensityestimatorsoncertainhomogeneousspacesintroducedbyRuymgaart(1989),byH.Hendriks,J.H.M.JanssenandRuymgaart(1993),andbyLeeandRuymgaart(1998).Inthispaper,weproposeaclassofadjustedPelletierdensityestimators,onhomogeneousspaces,thatconvergeuniformlyandalmostsurelyatthesamerateasnaivekerneldensityestimatorsonEuclideanspaces
Recommended Citation
J. Lee et al., "Nonparametric Density Estimation on Homogeneous Spaces in High Level Image Analysis.," Bioinformatics, Images, and Wavelets, Texas Tech University, Jan 2004.
Department(s)
Mathematics and Statistics
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2004 Texas Tech University, All rights reserved.
Publication Date
01 Jan 2004