Model Reduction of a Nonlinear Cable-Mass PDE System with Dynamic Boundary Input
Abstract
We consider the motion of a flexible cable attached to a mass-spring system at each end. The input to the system is the driving force to the mass-spring system at the left end, and the output of interest is the displacement and velocity of the mass at the right end. We model the system by a 1D damped wave equation coupled to second order oscillators holding on the boundaries. The mass-spring model at the right end includes a nonlinear stiffening force. We prove the linearized system is well-posed and exponentially stable. We perform balanced truncation model reduction of the linearized system, and use the resulting modes to obtain a nonlinear reduced order model. We numerically compare the input-output response of the nonlinear PDE system and the nonlinear reduced order model for various driving forces and model parameters.
Recommended Citation
B. A. Batten et al., "Model Reduction of a Nonlinear Cable-Mass PDE System with Dynamic Boundary Input," Proceedings of the 22nd International Symposium on Mathematical Theory of Networks and Systems (2016, Minneapolis, MN), pp. 327 - 334, Regents of the University of Minnesota, Jul 2016.
Meeting Name
22nd International Symposium on Mathematical Theory of Networks and Systems (2016: Jul. 11-15, Minneapolis, MN)
Department(s)
Mathematics and Statistics
Research Center/Lab(s)
Center for High Performance Computing Research
Document Type
Article - Conference proceedings
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2016 Regents of the University of Minnesota, All rights reserved.
Publication Date
01 Jul 2016