Parallel, Non-Iterative, Multi-Physics Domain Decomposition Methods for Time-Dependent Stokes-Darcy Systems
Abstract
Two parallel, non-iterative, multi-physics, domain decomposition methods are proposed to solve a coupled time-dependent Stokes-Darcy system with the Beavers-Joseph-Saffman-Jones interface condition. For both methods, spatial discretization is effected using finite element methods. The backward Euler method and a three-step backward differentiation method are used for the temporal discretization. Results obtained at previous time steps are used to approximate the coupling information on the interface between the Darcy and Stokes subdomains at the current time step. Hence, at each time step, only a single Stokes and a single Darcy problem need be solved; as these are uncoupled, they can be solved in parallel. The unconditional stability and convergence of the first method is proved and also illustrated through numerical experiments. The improved temporal convergence and unconditional stability of the second method is also illustrated through numerical experiments.
Recommended Citation
Y. Cao et al., "Parallel, Non-Iterative, Multi-Physics Domain Decomposition Methods for Time-Dependent Stokes-Darcy Systems," Mathematics of Computation, vol. 83, no. 288, pp. 1617 - 1644, American Mathematical Society, Jul 2014.
The definitive version is available at https://doi.org/10.1090/S0025-5718-2014-02779-8
Department(s)
Mathematics and Statistics
Research Center/Lab(s)
Center for High Performance Computing Research
International Standard Serial Number (ISSN)
0025-5718
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2014 American Mathematical Society, All rights reserved.
Publication Date
01 Jul 2014