Ensemble Statistical and Subspace Clustering Model for Analysis of Autism Spectrum Disorder Phenotypes
Abstract
Heterogeneity in Autism Spectrum Disorder (ASD) is complex including variability in behavioral phenotype as well as clinical, physiologic, and pathologic parameters. The fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) now diagnoses ASD using a 2-dimensional model based social communication deficits and fixated interests and repetitive behaviors. Sorting out heterogeneity is crucial for study of etiology, diagnosis, treatment and prognosis. In this paper, we present an ensemble model for analyzing ASD phenotypes using several machine learning techniques and a k-dimensional subspace clustering algorithm. Our ensemble also incorporates statistical methods at several stages of analysis. We apply this model to a sample of 208 probands drawn from the Simon Simplex Collection Missouri Site patients. The results provide useful evidence that is helpful in elucidating the phenotype complexity within ASD. Our model can be extended to other disorders that exhibit a diverse range of heterogeneity.
Recommended Citation
K. Al-Jabery et al., "Ensemble Statistical and Subspace Clustering Model for Analysis of Autism Spectrum Disorder Phenotypes," Proceedings of the 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (2016, Orlando, FL), Institute of Electrical and Electronics Engineers (IEEE), Aug 2016.
The definitive version is available at https://doi.org/10.1109/EMBC.2016.7591440
Meeting Name
38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (2016: Aug. 16-20, Orlando, FL)
Department(s)
Mathematics and Statistics
Second Department
Electrical and Computer Engineering
Research Center/Lab(s)
Center for High Performance Computing Research
Second Research Center/Lab
Intelligent Systems Center
International Standard Book Number (ISBN)
978-1457702204
International Standard Serial Number (ISSN)
1557-170X
Document Type
Article - Conference proceedings
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2016 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.
Publication Date
01 Aug 2016