Generic Existence Result for an Eigenvalue Problem with Rapidly Growing Principal Operator
Abstract
We consider the eigenvalue problem -div(a(|∇u|)∇u) = λg(x, u) in Ω u = 0 on ∂Ω, in the case where the principal operator has rapid growth. by using a variational approach, we show that under certain conditions, almost all lambda λ > 0are eigenvalues.
Recommended Citation
V. K. Le, "Generic Existence Result for an Eigenvalue Problem with Rapidly Growing Principal Operator," European Series in Applied and Industrial Mathematics: Control, Optimisation and Calculus of Variations, EDP Sciences, Jan 2004.
The definitive version is available at https://doi.org/10.1051/cocv:2004027
Department(s)
Mathematics and Statistics
Keywords and Phrases
generic existence; quasilinear elliptical equation; rapidly growing operator; variational inequality
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2004 EDP Sciences, All rights reserved.
Publication Date
01 Jan 2004