Splitting Extrapolation Algorithm for First Kind Boundary Integral Equations with Singularities by Mechanical Quadrature Methods
Editor(s)
Greengard, Leslie and Shelley, Michael
Abstract
The accuracy of numerical solutions near singular points is crucial for numerical methods. In this paper we develop an efficient mechanical quadrature method (MQM) with high accuracy. The following advantages of MQM show that it is very promising and beneficial for practical applications: (1) the O(h3max) convergence rate; (2) the O(h5max) convergence rate after splitting extrapolation; (3) Cond = O(hâˆ'1min) ; (4) the explicit discrete matrix entries. In this paper, the above theoretical results are briefly addressed and then verified by numerical experiments. The solutions of MQM are more accurate than those of other methods. Note that for the discontinuous model in Li et al. (Eng Anal Bound Elem 29:59–75, 2005), the highly accurate solutions of MQM may even compete with those of the collocation Trefftz method.
Recommended Citation
J. Huang et al., "Splitting Extrapolation Algorithm for First Kind Boundary Integral Equations with Singularities by Mechanical Quadrature Methods," Advances in Computational Mathematics, Springer Verlag, Jan 2012.
The definitive version is available at https://doi.org/10.1007/s10444-011-9181-8
Department(s)
Mathematics and Statistics
Keywords and Phrases
First-kind boundary integral equation; mechanical quadrature method; splitting extrapolation; a posteriori estimate; singularity; stability analysis
International Standard Serial Number (ISSN)
1019-7168
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2012 Springer Verlag, All rights reserved.
Publication Date
01 Jan 2012