Structural Measurements for Enhanced MAV Flight
Abstract
Our sense of touch allows us to feel the forces in our limbs when we walk, swim, or hold our arms out the window of a moving car. We anticipate this sense is key in the locomotion of natural flyers. Inspired by the sense of touch, the overall goal of this research is to develop techniques for the estimation of aerodynamic loads from structural measurements for flight control applications. We submit a general algorithm for the direct estimation of distributed steady loads over bodies from embedded noisy deformation-Based measurements. the estimation algorithm is applied to a linearly elastic membrane test problem where three applied distributed loads are estimated using three measurement configurations with various amounts of noise. We demonstrate accurate load estimates with simple sensor configurations, despite noisy measurements. Online real-time aerodynamic load estimates may lead to flight control designs that improve the stability and agility of micro air vehicles.
Recommended Citation
B. Dickinson et al., "Structural Measurements for Enhanced MAV Flight," AIAA Atmospheric Flight Mechanics Conference 2010, American Institute of Aeronautics and Astronautics, Dec 2010.
Department(s)
Mathematics and Statistics
International Standard Book Number (ISBN)
978-162410151-9
Document Type
Article - Conference proceedings
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2024 American Institute of Aeronautics and Astronautics, All rights reserved.
Publication Date
01 Dec 2010