Dessins D'enfants and Hubbard Trees
Abstract
We show that the absolute Galois group acts faithfully on the set of Hubbard trees. Hubbard trees are finite planar trees, equipped with self-maps, which classify postcritically finite polynomials as holomorphic dynamical systems on the complex plane. We establish an explicit relationship between certain Hubbard trees and the trees known as "dessins d'enfants" introduced by Grothendieck. © 2000 Éditions scientifiques et médicales Elsevier SAS.
Recommended Citation
K. M. Pilgrim, "Dessins D'enfants and Hubbard Trees," Annales Scientifiques de l'Ecole Normale Superieure, vol. 33, no. 5, pp. 671 - 693, Société Mathematique de France, Jan 2000.
The definitive version is available at https://doi.org/10.1016/S0012-9593(00)01050-8
Department(s)
Mathematics and Statistics
Keywords and Phrases
Belyi; Dessins; Holomorphic dynamics; Julia set
International Standard Serial Number (ISSN)
0012-9593
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2024 Société Mathematique de France, All rights reserved.
Publication Date
01 Jan 2000
Comments
National Science Foundation, Grant DMS-97003724