Abstract
We present and analyze a second order in time variable step BDF2 numerical scheme for the Cahn-Hilliard equation. the construction relies on a second order backward difference, convex-splitting technique and viscous regularizing at the discrete level. We show that the scheme is unconditionally stable and uniquely solvable. in addition, under mild restriction on the ratio of adjacent time-steps, an optimal second order in time convergence rate is established. the proof involves a novel generalized discrete Gronwall-type inequality. as far as we know, this is the first rigorous proof of second order convergence for a variable step BDF2 scheme, even in the linear case, without severe restriction on the ratio of adjacent time-steps. Results of our numerical experiments corroborate our theoretical analysis.
Recommended Citation
W. Chen et al., "A Second Order BDF Numerical Scheme with Variable Steps for the Cahn-Hilliard Equation," SIAM Journal on Numerical Analysis, vol. 57, no. 1, pp. 495 - 525, Society for Industrial and Applied Mathematics, Jan 2019.
The definitive version is available at https://doi.org/10.1137/18M1206084
Department(s)
Mathematics and Statistics
Keywords and Phrases
Cahn-Hilliard Equation; Convergence Analysis; Variable Step BDF2 Scheme
International Standard Serial Number (ISSN)
0036-1429
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2023 Society for Industrial and Applied Mathematics, All rights reserved.
Publication Date
01 Jan 2019
Comments
National Natural Science Foundation of China, Grant 11331004