Dynamical Transition and Bifurcation of Hydromagnetic Convection in a Rotating Fluid Layer
Abstract
We study the stability and dynamic transition of a rotating electrically conducting fluid layer in the presence of an external magnetic field based on the Boussinesq approximation. By analyzing the spectrum of the linear part of the model and verifying the validity of the principle of exchange of stability, we take a hybrid approach combining theoretical analysis with numerical computation to study the transition from a simple real eigenvalue, a pair of complex conjugate eigenvalues and a real eigenvalue of multiplicity two, respectively. The center manifold reduction theory is applied to reduce the infinite dimensional system to the corresponding finite dimensional one together with several non-dimensional transition numbers that determine the dynamic transition types. Careful numerical computations are performed to determine these transition numbers as well as related flow patterns. Our results indicate that both continuous and jump transitions can occur at certain parameter region.
Recommended Citation
L. Li et al., "Dynamical Transition and Bifurcation of Hydromagnetic Convection in a Rotating Fluid Layer," Communications in Nonlinear Science and Numerical Simulation, vol. 112, article no. 106531, Elsevier, Sep 2022.
The definitive version is available at https://doi.org/10.1016/j.cnsns.2022.106531
Department(s)
Mathematics and Statistics
Keywords and Phrases
Boussinesq approximation; Center manifold reduced equation; Dynamic transition; Hydromagnetic convection; Numerical computation
International Standard Serial Number (ISSN)
1007-5704
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2023 Elsevier, All rights reserved.
Publication Date
01 Sep 2022
Comments
National Science Foundation, Grant DMS-1912715