Discrete Symplectic Systems, Boundary Triplets, and Self-Adjoint Extensions
Abstract
An explicit characterization of all self-adjoint extensions of the minimal linear relation associated with a discrete symplectic system is provided using the theory of boundary triplets with special attention paid to the quasiregular and limit point cases. A particular example of the system (the second order Sturm-Liouville difference equation) is also investigated thoroughly, while higher order equations or linear Hamiltonian difference systems are discussed briefly. Moreover, the corresponding gamma field and Weyl relations are established and their connection with the Weyl solution and the classical M(λ)-function is discussed. To make the paper reasonably self-contained, an extensive introduction to the theory of linear relations, self-adjoint extensions, and boundary triplets is included.
Recommended Citation
P. Zemánek and S. L. Clark, "Discrete Symplectic Systems, Boundary Triplets, and Self-Adjoint Extensions," Dissertationes Mathematicae, vol. 579, Jan 2022.
The definitive version is available at https://doi.org/10.4064/dm838-12-2021
Department(s)
Mathematics and Statistics
Keywords and Phrases
Boundary Triplets; Discrete Symplectic System; Linear Relation; Self-Adjoint Extension
International Standard Serial Number (ISSN)
1730-6310; 0012-3862
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2022, All rights reserved.
Publication Date
01 Jan 2022
Comments
This work was supported by the Grantová Agentura České Republiky, Grant GA19-01246S.