Unconditionally Stable Numerical Methods for Cahn-Hilliard-Navier-Stokes-Darcy System with Different Densities and Viscosities
Abstract
In this article we consider the numerical modeling and simulation via the phase field approach for coupled two-phase free flow and two-phase porous media flow of different densities and viscosities. The model consists of the Cahn-Hilliard-Navier-Stokes equations in the free flow region and the Cahn-Hilliard-Darcy equations in porous media that are coupled by several domain interface conditions. It is showed that the coupled model satisfies an energy law. Then we first propose a coupled unconditionally stable finite element method for solving this model and analyze the energy stability for this method. Furthermore, based on the ideas of pressure stabilization and artificial compressibility, we propose an unconditionally stable time stepping method that decouples the computation of the phase field variable, the velocity and pressure of free flow, the velocity and pressure of porous media, hence significantly reduces the computational cost. The energy stability of this decoupled scheme with the finite element spatial discretization is rigorously established. We verify numerically that our schemes are convergent and energy-law preserving. Numerical experiments are also performed to illustrate the features of two-phase flows in the coupled free flow and porous media setting.
Recommended Citation
Y. Gao et al., "Unconditionally Stable Numerical Methods for Cahn-Hilliard-Navier-Stokes-Darcy System with Different Densities and Viscosities," Journal of Computational Physics, vol. 454, article no. 110968, Elsevier, Apr 2022.
The definitive version is available at https://doi.org/10.1016/j.jcp.2022.110968
Department(s)
Mathematics and Statistics
Keywords and Phrases
Cahn-Hilliard-Navier-Stokes-Darcy Model; Different Densities; Energy Stability; Finite Element Method; Two-Phase Flow
International Standard Serial Number (ISSN)
1090-2716; 0021-9991
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2022 Elsevier, All rights reserved.
Publication Date
01 Apr 2022
Comments
National Science Foundation, Grant DMS-1912715