Pattern Selection in the Schnakenberg Equations: from Normal to Anomalous Diffusion
Abstract
Pattern formation in the classical and fractional Schnakenberg equations is studied to understand the nonlocal effects of anomalous diffusion. Starting with linear stability analysis, we find that if the activator and inhibitor have the same diffusion power, the Turing instability space depends only on the ratio of diffusion coefficients (Formula presented.). However, smaller diffusive powers might introduce larger unstable wave numbers with wider band, implying that the patterns may be more chaotic in the fractional cases. We then apply a weakly nonlinear analysis to predict the parameter regimes for spot, stripe, and mixed patterns in the Turing space. Our numerical simulations confirm the analytical results and demonstrate the differences of normal and anomalous diffusion on pattern formation. We find that in the presence of superdiffusion the patterns exhibit multiscale structures. The smaller the diffusion powers, the larger the unstable wave numbers, and the smaller the pattern scales.
Recommended Citation
H. K. Khudhair et al., "Pattern Selection in the Schnakenberg Equations: from Normal to Anomalous Diffusion," Numerical Methods for Partial Differential Equations, Wiley, Sep 2021.
The definitive version is available at https://doi.org/10.1002/num.22842
Department(s)
Mathematics and Statistics
Second Department
Business and Information Technology
Publication Status
Early View: Online Version of Record before inclusion in an issue
Keywords and Phrases
Anomalous Diffusion; Fractional Laplacian; Pattern Formation; Schnakenberg Equations; Turing Instability
International Standard Serial Number (ISSN)
1098-2426; 0749-159X
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2021 Wiley, All rights reserved.
Publication Date
18 Sep 2021
Comments
This work was supported by the US National Science Foundation under Grant Number DMS-1620465.