An Algorithm Using the Finite Volume Element Method and Its Splitting Extrapolation

Editor(s)

Efendiev, Y. and Goovaerts, M. J. and Mitsui, T. and Ng, M. and Tsuchiya, T. and Wuytack, L.

Abstract

This paper is to present a new efficient algorithm by using the finite volume element method and its splitting extrapolation. This method combines the local conservation property of the finite volume element method and the advantages of splitting extrapolation, such as a high order of accuracy, a high degree of parallelism, less computational complexity and more flexibility than a Richardson extrapolation. Because the splitting extrapolation formulas only require us to solve a set of smaller discrete subproblems on different coarser grids in parallel instead of on the globally fine grid, a large scale multidimensional problem is turned into a set of smaller discrete subproblems. Additionally, this method is efficient for solving interface problems if we regard the interfaces of the problems as the interfaces of the initial domain decomposition.

Department(s)

Mathematics and Statistics

Keywords and Phrases

Extrapolation; Finite Volume Element Method; Parallel Algorithm; Domain Decomposition

International Standard Serial Number (ISSN)

0377-0427

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2011 Elsevier, All rights reserved.

Publication Date

01 Jan 2011

Share

 
COinS