Masters Theses
Abstract
"In the current petroleum fracturing industry, it is necessary to understand the downhole migration and settling velocity of the proppant. If we can master this information well, it will be a great help to obtain effective propped fracture conductivity. In order to study the transport of proppants in the well, we used laboratory experiments and computer numerical simulations to compare the results to get a meaningful conclusion. We spent a lot of time building models on a powerful computer and comparing the experimental conclusions. We finally decided to use computational fluid dynamics (CFD) as the simulation platform, discrete phase method (DPM) as the base model, and compare the simulation data with settling velocity experiment data to draw conclusions. Three cases were run and tested including fracture fluid type, proppant size, and fracture orientations. Results show a good integration between experimental results and simulation outputs. This work will help to provide a full understanding of the distinct changes of the mechanical characterization on the High Viscosity Friction Reducers (HVFRs). The findings provide an in-depth understanding of the behavior of HVFRs under confined effect, which could be used as guidance for fracture engineers to design and select better HVFR design"--Abstract, page iii.
Advisor(s)
Imqam, Abdulmohsin
Committee Member(s)
Dunn-Norman, Shari
Flori, Ralph E.
Department(s)
Geosciences and Geological and Petroleum Engineering
Degree Name
M.S. in Petroleum Engineering
Publisher
Missouri University of Science and Technology
Publication Date
Spring 2019
Pagination
xii, 65 pages
Note about bibliography
Includes bibliographical references (pages 60-64).
Rights
© 2019 Chen Yuan, All rights reserved.
Document Type
Thesis - Open Access
File Type
text
Language
English
Thesis Number
T 11561
Electronic OCLC #
1105154942
Recommended Citation
Yuan, Chen, "Computational fluid dynamics modeling of proppant static settling velocity in high viscosity friction reducers" (2019). Masters Theses. 7895.
https://scholarsmine.mst.edu/masters_theses/7895