Masters Theses
Keywords and Phrases
Gas breakdown; Plasma formation; Plasma modeling; Pulsed-inductive; Theta-pinch; Townsend Breakdown; Computational Physics
Abstract
"Pulsed-inductive discharges are a common method of producing a plasma. They provide a mechanism for quickly and efficiently generating a large volume of plasma for rapid use and are seen in applications including propulsion, fusion power, and high-power lasers. However, some common designs see a delayed response time due to the plasma forming when the magnitude of the magnetic field in the device is at a minimum. New designs are difficult to evaluate due to the amount of time needed to construct a new geometry and the high monetary cost of changing the power generation circuit. To more quickly evaluate new designs and better understand the shortcomings of existing designs, two computational models have been developed for use in Mathematica. The first model uses a modified single-electron model to determine how the energy distribution in a system changes with regards to time and location. The second model uses Townsend breakdown to obtain the time rate of change of electron number density. This rate is then integrated to obtain an electron number density distribution that varies with regards to time and location. By analyzing the energy distribution and the density distribution, the approximate times and locations of initial plasma breakdown and bulk plasma formation can be predicted. The results from these codes are then compared to existing data to show their validity and shortcomings"--Abstract, page iii.
Advisor(s)
Rovey, Joshua L.
Han, Daoru Frank
Committee Member(s)
Hosder, Serhat
Department(s)
Mechanical and Aerospace Engineering
Degree Name
M.S. in Aerospace Engineering
Publisher
Missouri University of Science and Technology
Publication Date
Fall 2018
Pagination
x, 74 pages
Note about bibliography
Includes bibliographical references (pages 70-73).
Rights
© 2018 Zachary Aaron Gill, All rights reserved.
Document Type
Thesis - Open Access
File Type
text
Language
English
Thesis Number
T 11418
Electronic OCLC #
1084475904
Recommended Citation
Gill, Zachary Aaron, "Developing computational models for pulsed-inductive plasma formation" (2018). Masters Theses. 7820.
https://scholarsmine.mst.edu/masters_theses/7820