Masters Theses
Abstract
"This paper deals with the automation of the detection of the cervical cancer through histology images. This process is divided into two parts, corresponding to segmentation and data fusion. The segmentation and classification of the cervical epithelium images is done using hybrid image processing techniques. The digitized histology images provided have a pre-cervical cancer condition called cervical intraepithelial neoplasia (CIN) by expert pathologists. Previously, image analysis studies focused on nuclei-level features to classify the epithelium into the CIN grades. The current study focuses on nuclei segmentation based on the level set segmentation and fuzzy c-means clustering methods. Morphological post-processing operations are used to smooth the image and to remove non-nuclei objects. This algorithm is evaluated on a 71-image dataset of digitized histology images for nuclei segmentation. Experimental results showed a nuclei detection accuracy of 99.53 percent. The second section of this thesis deals with the fusion of the 117 CIN features obtained after processing the input cervical images. Various data fusion techniques are tested using machine learning tools. For further research, the best algorithm from Weka is chosen"--Abstract, page iv.
Advisor(s)
Stanley, R. Joe
Committee Member(s)
Moss, Randy Hays, 1953-
Stoecker, William V.
Department(s)
Electrical and Computer Engineering
Degree Name
M.S. in Electrical Engineering
Sponsor(s)
Intramural Research Program of the National Institutes of Health
National Library of Medicine (U.S.)
Lister Hill National Center for Biomedical Communications
Publisher
Missouri University of Science and Technology
Publication Date
Spring 2017
Journal article titles appearing in thesis/dissertation
Nuclei segmentation using level set method and fuzzy c-means clustering
Pagination
x, 34 pages
Note about bibliography
Includes bibliographical references.
Rights
© 2017 Ravali Edulapuram, All rights reserved.
Document Type
Thesis - Open Access
File Type
text
Language
English
Thesis Number
T 11202
Print OCLC #
1022846449
Electronic OCLC #
1014181814
Recommended Citation
Edulapuram, Ravali, "Nuclei segmentation using level set method and data fusion for the CIN classification" (2017). Masters Theses. 7709.
https://scholarsmine.mst.edu/masters_theses/7709