Masters Theses
Uncertainty quantification of turbulence model closure coefficients for transonic wall-bounded flows
Keywords and Phrases
Printed Circuit Board
Abstract
"The goal of this work was to quantify the uncertainty and sensitivity of commonly used turbulence models in Reynolds-Averaged Navier-Stokes codes due to uncertainty in the values of closure coefficients for transonic, wall-bounded flows and to rank the contribution of each coefficient to uncertainty in various output flow quantities of interest. Specifically, uncertainty quantification of turbulence model closure coefficients was performed for transonic flow over an axisymmetric bump at zero degrees angle of attack and the RAE 2822 transonic airfoil at a lift coefficient of 0.744. Three turbulence models were considered: the Spalart-Allmaras Model, Wilcox (2006) k-ω Model, and the Menter Shear-Stress Transport Model. The FUN3D code developed by NASA Langley Research Center and the BCFD code developed by The Boeing Company were used as the flow solvers. The uncertainty quantification analysis employed stochastic expansions based on non-intrusive polynomial chaos as an efficient means of uncertainty propagation. Several integrated and point-quantities are considered as uncertain outputs for both CFD problems. All closure coefficients were treated as epistemic uncertain variables represented with intervals. Sobol indices were used to rank the relative contributions of each closure coefficient to the total uncertainty in the output quantities of interest. Two studies were performed in this work. The main study identified a number of closure coefficients for each turbulence model for which more information will reduce the amount of uncertainty in the output significantly for transonic, wall-bounded flows. A case study demonstrated that the RAE 2822 sensitivity results of the main study are independent of the flow solver and of the computational grid topology and resolution"--Abstract, page iii.
Advisor(s)
Hosder, Serhat
Committee Member(s)
Riggins, David W.
Isaac, Kakkattukuzhy M.
Department(s)
Mechanical and Aerospace Engineering
Degree Name
M.S. in Aerospace Engineering
Sponsor(s)
United States. National Aeronautics and Space Administration
Publisher
Missouri University of Science and Technology
Publication Date
Fall 2015
Pagination
xii, 92 pages
Note about bibliography
Includes bibliographical references (pages 89-91).
Rights
© 2015 John Anthony Schaefer, All rights reserved.
Document Type
Thesis - Open Access
File Type
text
Language
English
Subject Headings
Turbulence -- Computer simulationTurbulence -- Mathematical modelsFluid dynamics -- Approximation methodsTurbulent boundary layer -- Mathematical modelsUncertainty -- Mathematical models
Thesis Number
T 10800
Electronic OCLC #
936209445
Recommended Citation
Schaefer, John Anthony, "Uncertainty quantification of turbulence model closure coefficients for transonic wall-bounded flows" (2015). Masters Theses. 7480.
https://scholarsmine.mst.edu/masters_theses/7480
Comments
Funding support was provided by the Missouri S&T MAE Department, the Missouri S&T Chancellor's Fellowship Program, and NASA Grant NNX14AN17A (technical monitor: Mujeeb Malik).