Masters Theses
Keywords and Phrases
Dusty gas; Radiation
Abstract
"In detonative combustion very high temperatures are attained by the burned gases. As a result, a large amount of thermal energy is produced during the combustion process. This heat can affect the state of the unburned fuel through radiation of heat from the burned gases. In this study a one-dimensional model was deemed appropriate to gain insight into the fundamental structure of the detonation wave. In this model, the detonation wave divides the fluid stream into an upstream region, consisting of fuel and oxidant, and a downstream region, consisting of burned gases. A set of computer programs, some developed during the present work and others developed by other investigators, were used in combination. These codes, when used in conjunction with an appropriate chemical reaction mechanism, can work for most gaseous fuel/oxidant mixtures. Ethane-air, methane-air, syngas-air and acetylene-oxygen mixtures, seeded with solid carbon particles, were used. Variation in flow properties were obtained for both the unburned and burned regions. The temperature levels observed in the burned region supports the previous statement regarding high thermal energy generation. The flame structure of the detonation wave region was studied. To study the effect of radiative heating in the unburned upstream region, appropriate emissivity and absorptivity models from literature were used. Carbon particles have a significant role in the upstream side, and as the results reveal, they have a relatively higher heat absorbing capacity than the gaseous components. A study of the amount of burned gas considered represented by the path length in evaluating the amount of heat radiated was also done to understand its effect on the upstream side."--Abstract, page iv.
Advisor(s)
Isaac, Kakkattukuzhy M.
Committee Member(s)
Drallmeier, J. A.
Rovey, Joshua L.
Department(s)
Mechanical and Aerospace Engineering
Degree Name
M.S. in Mechanical Engineering
Publisher
Missouri University of Science and Technology
Publication Date
Spring 2015
Journal article titles appearing in thesis/dissertation
- Radiative Heating of Dusty Gas Fuel-Air Mixtures in One Dimensional Detonation
Pagination
ix, 62 pages
Note about bibliography
Includes bibliographical references.
Rights
© 2015 Shubhadeep Banik, All rights reserved.
Document Type
Thesis - Open Access
File Type
text
Language
English
Subject Headings
Detonation waves -- Computer simulationCombustion -- Mathematical modelsThermodynamics -- Mathematical models
Thesis Number
T 10663
Electronic OCLC #
913478151
Recommended Citation
Banik, Shubhadeep, "Numerical study of upstream and downstream regions of one dimensional detonation wave in a dusty gas medium" (2015). Masters Theses. 7386.
https://scholarsmine.mst.edu/masters_theses/7386