Masters Theses
Abstract
"In this study, the feasibility of using libration point orbits to explore small solar system bodies, including asteroids and comets, is considered. A novel design for a small body mission is proposed that makes use of libration point orbits as "parking" orbits. In considering a human exploration mission to asteroids or comets, these "parking" orbits may provide benefits including a safe vantage point for staging/observation, reduced perturbation effects from the nonuniform gravitational field of the body, fewer communication blackouts, ease of guidance and control of a lander on the surface, etc. Because small solar system bodies have extremely low mass ratios in the Sun-small body system, the existence of periodic orbits about the collinear libration points at a safe distance from the smaller primary was uncertain and is demonstrated for a range of small bodies. A two-level differential corrector along with periodicity constraints is proposed for use in computing periodic orbits in the vicinity of the small bodies with significant eccentricity in the Elliptic Restricted Three-Body Problem. Using this method, halo-like orbits are computed in the Sun-433 Eros and Sun-4 Vesta systems. The stability of these orbits is analyzed using Floquet theory. To overcome the effects of perturbations in these unstable orbits, a robust nonlinear station-keeping controller based on sliding mode control theory is proposed. The controller performance is validated in the presence of third-body perturbations from Jupiter, solar radiation pressure perturbations, tracking errors, orbit insertion errors and maneuver burn errors in the Sun-433 Eros and Sun-4 Vesta systems. Simulation results are presented that show that the small body missions can be designed using libration point orbits with feasible station-keeping costs"--Abstract, page iii.
Advisor(s)
Pernicka, Hank
Balakrishnan, S. N.
Committee Member(s)
Rovey, Joshua L.
Department(s)
Mechanical and Aerospace Engineering
Degree Name
M.S. in Aerospace Engineering
Sponsor(s)
Missouri University of Science and Technology. Department of Mechanical and Aerospace Engineering
Publisher
Missouri University of Science and Technology
Publication Date
Fall 2013
Pagination
x, 97 pages
Note about bibliography
Includes bibliographical references (pages 129-135).
Rights
© 2013 Bharat Mahajan, All rights reserved.
Document Type
Thesis - Open Access
File Type
text
Language
English
Subject Headings
Three-body problemOrbitsLagrangian pointsPerturbation (Astronomy)Differentiable dynamical systems
Thesis Number
T 10409
Electronic OCLC #
870650968
Recommended Citation
Mahajan, Bharat, "Libration point orbits near small bodies in the elliptic restricted three-body problem" (2013). Masters Theses. 7200.
https://scholarsmine.mst.edu/masters_theses/7200