Masters Theses
Abstract
"Compliant mechanisms offer numerous advantages over their rigid-body counterparts. The synthesis with compliance technique synthesizes compliant mechanisms for conventional rigid-body synthesis tasks with energy/torque specifications at precision positions. In spite of its usefulness, the method suffers from some limitations/problems. The purpose of this work is to investigate these sensitivities with the synthesis with compliance technique and improve upon existing method. A new, simple but efficient, method for synthesis with compliance using an optimization approach is proposed, and its usefulness and simplicity demonstrated over the existing method. The strongly and weakly coupled system of kinematic and energy/torque equations in the existing method has been studied, and the new method is made simple by removing the strong coupling between these sets of equations. All synthesis cases are solved by treating them as though they are governed by weakly coupled systems of equations. Representative examples of different synthesis tasks are presented. The results are verified with finite element analysis software ABAQUS® and ANSYS® by means of coupler curve/precision position comparisons, and stored energy comparisons. An experimental setup has been devised to perform experiments on compliant mechanisms for validation purposes. The results obtained using the Pseudo-Rigid-Body Model (PRBM) for compliant mechanism synthesis match closely with experimental and finite element analysis (FEA) results, and hence reinforce the utility of the synthesis with compliance method using the PRBM in compliant mechanism synthesis"--Abstract, page iii.
Advisor(s)
Midha, A. (Ashok)
Committee Member(s)
Chandrashekhara, K.
Du, Xiaoping
Department(s)
Mechanical and Aerospace Engineering
Degree Name
M.S. in Mechanical Engineering
Publisher
Missouri University of Science and Technology
Publication Date
Spring 2013
Pagination
x, 142 pages
Note about bibliography
Includes bibliographical references.
Rights
© 2013 Ashish Bharat Koli, All rights reserved.
Document Type
Thesis - Open Access
File Type
text
Language
English
Subject Headings
Machine design -- ResearchMechanical movements -- DesignFlexible structures
Thesis Number
T 10292
Electronic OCLC #
853281142
Recommended Citation
Koli, Ashish B., "A generalized approach for compliant mechanism design using the synthesis with compliance method, with experimental validation" (2013). Masters Theses. 7099.
https://scholarsmine.mst.edu/masters_theses/7099