Masters Theses

The dynamic multiplier-accelerator model in economics


"In this work we derive a second-order dynamic equation which describes Samuelson's multiplier-accelerator model on time scales, where the forward jump operator [symbols for sigma] is [symbol for symmetric]-differentiable. For the constant graininess case, a general solution will be derived. Moreover a stability analysis for the hZ case is made. As a next step, we extend this model with the assumption that taxes are raised by the government, and again derive a dynamic equation which represents the model. Then we do the same for the Hicksian extension of the model, and finally for the Hicksian model including foreign trade, i.e., including imports and exports. Moreover criteria are developed, under which all solutions of these second-order dynamic equations oscillate, and when they converge monotonically to the equilibrium value of the national income. Finally we do similar calculations using nable-derivatives, which gives us a second-order dynamic equation, provided that the backward jump operator p is [symbol for divergence]-differentiable"--Abstract, page iii.


Bohner, Martin, 1966-

Committee Member(s)

Akin, Elvan
Gelles, Gregory M.


Mathematics and Statistics

Degree Name

M.S. in Applied Mathematics


Missouri University of Science and Technology

Publication Date

Summer 2008


x, 127 pages


© 2008 Julius Heim, All rights reserved.

Document Type

Thesis - Citation

File Type




Subject Headings

Multiplier (Economics)
Time-series analysis

Thesis Number

T 9405

Print OCLC #


Link to Catalog Record

Full-text not available: Request this publication directly from Missouri S&T Library or contact your local library.

This document is currently not available here.

Share My Thesis If you are the author of this work and would like to grant permission to make it openly accessible to all, please click the button above.