Masters Theses
Abstract
"Variables influencing the mixing in a single-phase (30.5 x 60 x 606 cm) and a two-phase (20 x 40 x 200 cm) channel reactor model were studied. Tracer and/or neutral density particle techniques were used to determine an eddy diffusivity, De, for the system(s). Three bubbler arrangements were investigated in the one-phase work. A separate apparatus was developed to withstand the corrosiveness of the tetrachloroethylene used in the two-phase work.
Both the electrical conductivity tracer technique and the neutral density particle technique were shown to be feasible experimental techniques for determining an eddy diffusivity in the systems studied. Decreasing liquid depth or gas flow rate decreased the mixing in the systems. The bubble wall bubbler arrangement yielded higher De values and the central linear bubbler arrangement yielded lower values, relative to the single central bubbler arrangement. This was attributed to the directionality of the non-turbulent portion of the mixing energy.
In the two-phase work, an upper phase was shown to decrease the mixing in the lower phase. Also, mixing in the upper phase was also lower than that expected, probably due to a more random mixing in this phase which resulted from surface energy effects on the gas phase at the liquid-liquid interface"--Abstract, page ii.
Advisor(s)
Robertson, D. G. C.
Committee Member(s)
Reed, X. B., Jr.
Watson, John L.
Morris, Arthur E., 1935-
Department(s)
Materials Science and Engineering
Degree Name
M.S. in Metallurgical Engineering
Publisher
University of Missouri--Rolla
Publication Date
Fall 1987
Pagination
xv, 103 pages
Note about bibliography
Includes bibliographical references (pages 93-95).
Rights
© 1987 Jay Bernett Gassel, All rights reserved.
Document Type
Thesis - Open Access
File Type
text
Language
English
Thesis Number
T 5590
Print OCLC #
17699648
Electronic OCLC #
1098193466
Recommended Citation
Gassel, Jay Bernett, "Characterization of the fluid-dynamic mixing of a bottom gas-injected channel reactor using low-temperature modelling" (1987). Masters Theses. 613.
https://scholarsmine.mst.edu/masters_theses/613
Comments
The author would like to acknowledge the Generic Mineral Technology Center for Pyrometallurgy and the United States Bureau of Mines, whose funding made this work possible.