Masters Theses
Abstract
"The recent advent of nuclear energy has opened an era of almost unlimited power and countless problems. A problem of extreme importance is the recovery of unburned nuclear fuel and the claiming of transmutation products, such as Pu239 and U233, from the irradiated fuel elements. The chemical processing must also separate the fission products from the fissionable material if the fuel is to be used again.
At present, the irradiated fuel elements are stored for 90 to 120 days to allow the intense short half-life activity to decay. After "cooling down", the nuclear fuels are separated from the fission products and the inert components of the reactor element by solvent extraction. The fuel elements are usually dissolved in nitric acid and the resulting solution is fed into the midsection of an extraction column where it is contacted with an immiscible organic solvent. The solvent selectively extracts the uranium and plutonium from the acid aqueous phase. A "salting agent” is added to the top of the column, removing the last trace of fission products from the organic phase. The aqueous phase is now composed of the fission products and large amounts of inert material, such as nitric acid, aluminum nitrate, and the dissolved cladding. The aqueous solution must be processed to remove the valuable radioelements and prepare the active waste for disposal in an acceptable manner.
The waste solutions are concentrated, usually by evaporation, and stored permanently in underground steel tanks. Since the storage facilities are limited, a method must be developed for permanent disposal of fission products. A very promising method of treating the radioactive waste is the use of ion exchange membranes in electrodialysis. Electrodialysis units can remove the nitric acid from the aqueous waste containing the fission products and inert components. Only after the major portion of the acid and inert salts have been removed from the solution is the fixation of the fission products on clay material effective for ultimate disposal.
The purpose of this investigation was to determine if radioisotopes could be separated in a pure form by electrodialysis. The behavior of the radiocolloidal nature of selected radioisotopes was also studied. The ultimate aim of the investigation was the economic recovery of selected radioelements In a pure form. The removal of the long half-life radioisotopes also aids in the preparation of the waste for ultimate disposal. The isotopes studied were cerium-144, cesium-137, and zirconium-95 in equilibrium with their daughter products, praseodymium-144, barium-137, and niobium-95 respectively"--Introduction, pages 1-2.
Advisor(s)
Webb, William H.
Committee Member(s)
Strunk, Mailand R., 1919-2008
Pagano, Sylvester J., 1924-2006
Miles, Aaron J.
Department(s)
Chemical and Biochemical Engineering
Degree Name
M.S. in Chemical Engineering
Sponsor(s)
U. S. Atomic Energy Commission
Publisher
Missouri School of Mines and Metallurgy
Publication Date
1960
Pagination
viii, 132 pages
Note about bibliography
Includes bibliographical references (pages 120-130).
Rights
© 1960 Jerry David Vie, All rights reserved.
Document Type
Thesis - Open Access
File Type
text
Language
English
Subject Headings
Radioactive waste disposal -- EvaluationRadioactive substancesFission productsNuclear fuelsElectrodialysis
Thesis Number
T 1265
Print OCLC #
5928817
Electronic OCLC #
959836534
Recommended Citation
Vie, Jerry David, "The separation of selected radioactive fission products by electrodialysis" (1960). Masters Theses. 5572.
https://scholarsmine.mst.edu/masters_theses/5572
Comments
Financial assistance provided by the Atomic Energy Commissions Grant No. AT(11-1)-770