Masters Theses
Abstract
"This thesis describes the results of a study initiated to examine the influence of concrete unit weight on the direct shear transfer across an interface of concretes cast at different times. This type of interface is common with structural precast concrete connections, such as corbels, for which shear friction design provisions are commonly used. Increasing use of lightweight aggregate concretes prompted this investigation to determine the appropriateness of current shear friction design provisions with respect to all-lightweight and sand-lightweight concrete. The experimental investigation included thirty-six push-off test specimens, each of which was constructed with a cold-joint at the interface shear plane. Test variables included unit weight of concrete (108, 120, and 145 pcf), target compressive strength of concrete (5000 and 8000 psi), and interface condition (smooth or roughened). A constant amount of reinforcing steel was provided across the shear plane. Results suggest that concrete unit weight did not play a significant role in the interface shear strength for the cold-joint specimens in this study. Results were also compared with shear friction design provisions in both the ACI 318 code and the PCI Design Handbook. Shear strengths computed using the coefficient of friction µ approach were conservative for the sand-lightweight and all-lightweight cold-joint specimens in this study. The value of the effective coefficient of friction µₑ computed using the PCI Design Handbook approach was found to be conservative for both roughened and smooth non-monolithic interfaces for each concrete type. Finally, the use of the lightweight concrete modification factor λ in the calculation for the effective coefficient of friction µₑ was found to be conservative for the sand-lightweight and all-lightweight cold-joint specimens in this study. This study is sponsored by the Precast/Prestressed Concrete Institute Daniel P. Jenny Fellowship Program and the National University Transportation Center at the Missouri University of Science and Technology in Rolla, Missouri"--Abstract, page iii.
Advisor(s)
Sneed, Lesley
Committee Member(s)
Myers, John
Volz, Jeffery S.
Meinheit, D. (Donald F.).
Department(s)
Civil, Architectural and Environmental Engineering
Degree Name
M.S. in Civil Engineering
Sponsor(s)
Precast/Prestressed Concrete Institute
Missouri University of Science and Technology. National University Transportation Center
Publisher
Missouri University of Science and Technology
Publication Date
Fall 2013
Pagination
xvi, 141 pages
Note about bibliography
Includes bibliographical references (pages 34-35).
Rights
© 2013 Dane Michael Shaw, All rights reserved.
Document Type
Thesis - Open Access
File Type
text
Language
English
Subject Headings
Lightweight concrete -- TestingPrecast concrete -- TestingAggregates (Building materials)Shear (Mechanics)Friction
Thesis Number
T 10418
Electronic OCLC #
870651376
Recommended Citation
Shaw, Dane Michael, "Direct shear transfer of lightweight aggregate concretes with non-monolithic interface conditions" (2013). Masters Theses. 5444.
https://scholarsmine.mst.edu/masters_theses/5444