Masters Theses
Abstract
"It is an accepted fact that the simple Maxwell and Voigt models do not usually represent the behavior of real materials. In order to make the results of a model more realistic, other combinations of springs and dashpots must be considered. To understand the more complicated models, it is desirable to have a knowledge of the Maxwell model since this element usually occurs either in series or in parallel in the advanced models. This investigation reports solutions of the spherical wave equation in both the elastic and viscoelastic media. Laplace transform techniques are used to obtain the parameters; stress, velocity, and acceleration for the Maxwell solid and velocity, acceleration, displacement, stress, and strain for the elastic solid. The delta pressure pulse was chosen because of its simple transform (unity) and because the solution for any other pressure pulse can be obtained by convolution. Simpson integration was performed to obtain the numerical data"--Abstract, page ii.
Advisor(s)
Hornsey, Edward
Committee Member(s)
Clark, George Bromley, 1912-
Davis, Robert L.
Department(s)
Mechanical and Aerospace Engineering
Degree Name
M.S. in Engineering Mechanics
Publisher
University of Missouri--Rolla
Publication Date
1968
Pagination
vii, 43 pages
Note about bibliography
Includes bibliographical references (pages 18-23).
Rights
© 1968 William Francis Breig, All rights reserved.
Document Type
Thesis - Open Access
File Type
text
Language
English
Subject Headings
Dirac equationStress wavesWave mechanics -- Mathematical models
Thesis Number
T 2120
Print OCLC #
5995627
Electronic OCLC #
803584038
Recommended Citation
Breig, William F., "An analysis of Dirac delta generated spherical waves in an infinite Maxwell medium" (1968). Masters Theses. 5228.
https://scholarsmine.mst.edu/masters_theses/5228