Masters Theses
Abstract
"The challenge of extending Moore's Law past the physical limits of the present semiconductor technology calls for novel innovations. Several novel nanotechnologies are being proposed as an alternative to their CMOS counterparts, with nanowire crossbar being one of the most promising paradigms. Quite recently, a new promising clock-free architecture, called the Asynchronous Crossbar Architecture has been proposed to enhance the manufacturability and to improve the robustness of digital circuits by removing various timing related failure modes. Even though the proposed clock-free architecture offers several merits, it is not free from the high defect rates induced due to nondeterministic nanoscale assembly. In this work, a unique Functional Test Algorithm (FTA) has been proposed and validated to test for manufacturing defects in this architecture. The proposed Functional Test Algorithm is aimed at reducing the testing overhead in terms of the time and space complexity associated with the existing sequential test scheme. In addition, it is designed to provide high fault coverage and excellent fault-tolerance via post-reconfiguration. This test scheme can be effectively used to assure true functionality of any threshold gate realized on a given PGMB. The main motivation behind this research is to propose a comprehensive test scheme which can achieve sufficiently high test coverage with acceptable test overhead. This test algorithm is a significant effort towards viable nanoscale computation"--Abstract, page iv.
Advisor(s)
Choi, Minsu
Committee Member(s)
McCracken, Theodore E.
Sedigh, Sahra
Department(s)
Electrical and Computer Engineering
Degree Name
M.S. in Computer Engineering
Publisher
Missouri University of Science and Technology
Publication Date
Spring 2009
Journal article titles appearing in thesis/dissertation
- Functional testing of asynchronous nanowire crossbar architecture
- Post-configuration of asynchronous nanowire crossbar architecture
- Novel functional testing technique for asynchronous nanowire crossbar system
Pagination
x, 71 pages
Rights
© 2009 Sriram Venkateswaran, All rights reserved.
Document Type
Thesis - Open Access
File Type
text
Language
English
Subject Headings
Asynchronous circuits -- DesignNanotechnology -- TestingNanowires
Thesis Number
T 9502
Print OCLC #
436166338
Electronic OCLC #
299090548
Recommended Citation
Venkateswaran, Sriram, "Functional testing of faults in asynchronous crossbar architecture" (2009). Masters Theses. 4644.
https://scholarsmine.mst.edu/masters_theses/4644