Masters Theses

Inspection of printed circuit boards using data mining of image features

Abstract

"This thesis focuses on an idea to inspect the defects on a bare PCB and to build a model, which identifies the board type as defective or non-defective and to identify the kind of defect with respect to hole and line, which are the features that define the PCB. The model is based on the Data Mining concepts and different data mining techniques such as Rough sets, Quinlan's C45, Neural networks, ART2 and K-means clustering.--Abstract, page iii.

Department(s)

Computer Science

Degree Name

M.S. in Computer Science

Publisher

University of Missouri--Rolla

Publication Date

Fall 2003

Pagination

xii, 152 pages

Note about bibliography

Includes bibliographical references.

Rights

© 2003 Swapna Ragini Ayyavari, All rights reserved.

Document Type

Thesis - Citation

File Type

text

Language

English

Subject Headings

Data miningQuality control -- Optical methodsPrinted circuits

Thesis Number

T 8415

Print OCLC #

55480944

This document is currently not available here.

Share My Thesis If you are the author of this work and would like to grant permission to make it openly accessible to all, please click the button above.

Share

 
COinS