Masters Theses
Abstract
“Event related potentials, or ERPs, are averaged waveforms of EEG cerebral activity measured using non-invasive electrodes attached to the scalp. They occur at a particular time before, during, or after some physical or psychological event. Certain diseases resulting in neuropsychological impairment seem to result in changes in the waveform and latency of the P300 auditory evoked potential. It would be desirable to find a method to examine human ERP measurements with the goal of detecting the presence of and measuring the progress of such diseases.
The detection of multiple sclerosis using such a method would allow for the detection of this disease without resorting to a battery of complex tests that would need to be administered by highly trained specialists. If the abnormalities exist before other symptoms become evident, such a detection method might benefit the prognosis for patients, as well as providing a benchmark for measuring the progression of the disease.
Experiments using artificial neural networks to analyze ERP data sets have been performed in previous research by Slater, Wu, Ramsey, Honig and Morgan. Using feed forward backpropagation neural networks, those researchers obtained classification accuracies of 80% for single channel (electrode) training. By constructing a simple voting jury that assigns a classification based on a vote of 2 out of 3 single channel outputs, accuracies of 90% were achieved. This research describes a series of experiments on the same data sets undertaken with the goal of seeking higher accuracies. Single channel training using inputs that were pruned to isolate the P300 resulted in classification accuracies approaching 86%. By constructing a multi-channel ensemble network that used raw outputs of the single channel networks as inputs, classification accuracies of 96% were achieved”--Abstract, page iv.
Advisor(s)
St. Clair, Daniel C.
Committee Member(s)
Wilkerson, Ralph W.
Dagli, Cihan H., 1949-
Department(s)
Computer Science
Degree Name
M.S. in Computer Science
Publisher
University of Missouri--Rolla
Publication Date
Fall 2001
Pagination
ix, 48 pages
Note about bibliography
Includes bibliographical references (pages 46-47).
Rights
© 2001 Greg Eastman, All rights reserved.
Document Type
Thesis - Restricted Access
File Type
text
Language
English
Thesis Number
T 7967
Print OCLC #
48797564
Recommended Citation
Eastman, Gregory Charles, "Detection of multiple sclerosis using neural network ensembles" (2001). Masters Theses. 2087.
https://scholarsmine.mst.edu/masters_theses/2087
Share My Thesis If you are the author of this work and would like to grant permission to make it openly accessible to all, please click the button above.