Session Dates
07 Nov 2018 - 08 Nov 2018
Abstract
Cold-formed steel sheathed shear walls are now emerging as a strategic vertical lateral load resisting component in seismic design. However, although a number of component cyclic test programs have been conducted in recent years to characterize their hysteretic behavior and guide design, system-level test programs to investigate their performance are so far lacking in the literature. To this end, a unique full-scale CFS-framed mid-rise building shake table test program was conducted to contribute to understanding the behavior of mid-rise cold-formed steel (CFS) wall-braced buildings under a multi-hazard scenario. The centerpiece of this project involved earthquake and live fire testing of a full-scale six-story CFS wall braced building constructed on the Large High Performance Outdoor Shake Table (LHPOST) at UCSD. This paper first provides a brief overview of the test program and summarizes the system-level (global) response of the test building during the shake table tests. Subsequently, a key focus of this paper is comparison of the component-level responses of various shear wall systems of the test building as well as their physical damage.
Department(s)
Civil, Architectural and Environmental Engineering
Meeting Name
Wei-Wen Yu International Specialty Conference on Cold-Formed Steel Structures 2018
Publisher
Missouri University of Science and Technology
Document Version
Final Version
Rights
© 2018 Missouri University of Science and Technology, All rights reserved.
Document Type
Article - Conference proceedings
File Type
text
Language
English
Recommended Citation
Wang, X.; Hutchinson, Tara C.; Hegemier, G.; and Rogers, Colin A., "Seismic Behavior of Cold-Formed Steel Shear Walls during Full-Scale Building Shake Table Tests" (2018). CCFSS Proceedings of International Specialty Conference on Cold-Formed Steel Structures (1971 - 2018). 4.
https://scholarsmine.mst.edu/isccss/24iccfss/session9/4
Seismic Behavior of Cold-Formed Steel Shear Walls during Full-Scale Building Shake Table Tests
Cold-formed steel sheathed shear walls are now emerging as a strategic vertical lateral load resisting component in seismic design. However, although a number of component cyclic test programs have been conducted in recent years to characterize their hysteretic behavior and guide design, system-level test programs to investigate their performance are so far lacking in the literature. To this end, a unique full-scale CFS-framed mid-rise building shake table test program was conducted to contribute to understanding the behavior of mid-rise cold-formed steel (CFS) wall-braced buildings under a multi-hazard scenario. The centerpiece of this project involved earthquake and live fire testing of a full-scale six-story CFS wall braced building constructed on the Large High Performance Outdoor Shake Table (LHPOST) at UCSD. This paper first provides a brief overview of the test program and summarizes the system-level (global) response of the test building during the shake table tests. Subsequently, a key focus of this paper is comparison of the component-level responses of various shear wall systems of the test building as well as their physical damage.