Session Dates
09 Nov 2016
Abstract
The design of unbraced cold-formed steel beams must consider lateral-torsional buckling due to the low torsional stiffness associated with open cross-sections. The American Iron and Steel Institute incorporated design equations for the critical elastic lateral-torsional buckling stress in the North American Specification for the Design of Cold-Formed Steel Members. These equations are based on elastic theory for singly-symmetric and doubly-symmetric sections. However, the equation for point-symmetric sections is only a rough approximation. Furthermore, there are no provisions for lateral-torsional buckling of non-symmetric sections, or sections oriented to non-principal axes. This paper investigates and develops a general formulation of the lateral-torsional buckling equation to broadly cover all cold-formed steel cross-sections.
Department(s)
Civil, Architectural and Environmental Engineering
Research Center/Lab(s)
Wei-Wen Yu Center for Cold-Formed Steel Structures
Meeting Name
International Specialty Conference on Cold-Formed Steel Structures 2016
Publisher
Missouri University of Science and Technology
Document Version
Final Version
Rights
© 2016 Missouri University of Science and Technology, All rights reserved.
Document Type
Article - Conference proceedings
File Type
text
Language
English
Recommended Citation
Glauz, Robert S., "Lateral-Torsional Buckling of General Cold-Formed Steel Beams" (2016). CCFSS Proceedings of International Specialty Conference on Cold-Formed Steel Structures (1971 - 2018). 6.
https://scholarsmine.mst.edu/isccss/23iccfss/session3/6
Lateral-Torsional Buckling of General Cold-Formed Steel Beams
The design of unbraced cold-formed steel beams must consider lateral-torsional buckling due to the low torsional stiffness associated with open cross-sections. The American Iron and Steel Institute incorporated design equations for the critical elastic lateral-torsional buckling stress in the North American Specification for the Design of Cold-Formed Steel Members. These equations are based on elastic theory for singly-symmetric and doubly-symmetric sections. However, the equation for point-symmetric sections is only a rough approximation. Furthermore, there are no provisions for lateral-torsional buckling of non-symmetric sections, or sections oriented to non-principal axes. This paper investigates and develops a general formulation of the lateral-torsional buckling equation to broadly cover all cold-formed steel cross-sections.