Session Dates
06 Nov 2014
Abstract
Experimental tests have previously shown that the strength of bolted moment-connections between cold-formed steel members, where the connections are formed through an array of bolts in the web, is dependent on the length of the bolt-group. This reduced strength has been observed in tests on portal frame joints as well as over-lapped purlin joints. For a short bolt-group length, in the order of the depth of the section, this paper shows that a reasonable lower bound to this reduced strength can be predicted by using the Direct Strength Method (DSM), modified to include the effect of the bimoment at the connection. The upper bound would be the full in-plane major axis moment-capacity of the section, which can be achieved with a long bolt-group length and can also be predicted using the conventional DSM.
Department(s)
Civil, Architectural and Environmental Engineering
Research Center/Lab(s)
Wei-Wen Yu Center for Cold-Formed Steel Structures
Meeting Name
22nd International Specialty Conference on Cold-Formed Steel Structures
Publisher
Missouri University of Science and Technology
Document Version
Final Version
Rights
© 2014 Missouri University of Science and Technology, All rights reserved.
Document Type
Article - Conference proceedings
File Type
text
Language
English
Recommended Citation
Lim, James B. P.; Hancock, Gregory J.; Clifton, G. Charles; and Pham, Cao Hung, "Direct Strength Method for Ultimate Strength of Bolted Moment-Connections between Cold-Formed Steel Channel Members" (2014). CCFSS Proceedings of International Specialty Conference on Cold-Formed Steel Structures (1971 - 2018). 4.
https://scholarsmine.mst.edu/isccss/22iccfss/session10/4
Direct Strength Method for Ultimate Strength of Bolted Moment-Connections between Cold-Formed Steel Channel Members
Experimental tests have previously shown that the strength of bolted moment-connections between cold-formed steel members, where the connections are formed through an array of bolts in the web, is dependent on the length of the bolt-group. This reduced strength has been observed in tests on portal frame joints as well as over-lapped purlin joints. For a short bolt-group length, in the order of the depth of the section, this paper shows that a reasonable lower bound to this reduced strength can be predicted by using the Direct Strength Method (DSM), modified to include the effect of the bimoment at the connection. The upper bound would be the full in-plane major axis moment-capacity of the section, which can be achieved with a long bolt-group length and can also be predicted using the conventional DSM.