Session Dates

24 Aug 2012 - 25 Aug 2012

Abstract

In the AISI Specification for the Design of Cold-formed Steel Structural Members 2007, there are two types of shear planes used to determine the resistance of a bolted connection to block shear failure. When the block shear failure occurs by shear yielding and tensile rupture, the shear failure plane is taken to be the gross shear plane. Conversely, when the block shear failure is deemed to occur by simultaneous shear and tensile ruptures, the shear failure plane is assumed to be the net shear plane. Such an approach is not logical since the shear failure planes should be unique irrespective of the block shear failure mechanism. Through finite element analysis presented in this paper, the shear failure plane is shown to be neither the gross nor the net shear plane, and to be midway between the two shear planes assumed in design specifications. This shear failure plane is termed the active shear plane. The veracity of the active shear area is demonstrated in terms of the ability of the resulting block shear equation to predict the governing failure modes of test specimens consistently, in comparison against the equations assuming the gross and the net shear areas.

Department(s)

Civil, Architectural and Environmental Engineering

Research Center/Lab(s)

Wei-Wen Yu Center for Cold-Formed Steel Structures

Meeting Name

21st International Specialty Conference on Cold-Formed Steel Structures

Publisher

Missouri University of Science and Technology

Document Version

Final Version

Rights

© 2012 Missouri University of Science and Technology, All rights reserved.

Document Type

Article - Conference proceedings

File Type

text

Language

English

Share

 
COinS
 
Aug 24th, 12:00 AM Aug 25th, 12:00 AM

Active Shear Planes in Block Shear Failure of Bolted Connections

In the AISI Specification for the Design of Cold-formed Steel Structural Members 2007, there are two types of shear planes used to determine the resistance of a bolted connection to block shear failure. When the block shear failure occurs by shear yielding and tensile rupture, the shear failure plane is taken to be the gross shear plane. Conversely, when the block shear failure is deemed to occur by simultaneous shear and tensile ruptures, the shear failure plane is assumed to be the net shear plane. Such an approach is not logical since the shear failure planes should be unique irrespective of the block shear failure mechanism. Through finite element analysis presented in this paper, the shear failure plane is shown to be neither the gross nor the net shear plane, and to be midway between the two shear planes assumed in design specifications. This shear failure plane is termed the active shear plane. The veracity of the active shear area is demonstrated in terms of the ability of the resulting block shear equation to predict the governing failure modes of test specimens consistently, in comparison against the equations assuming the gross and the net shear areas.