INSPIRE Archived Webinars

Recent Development on Bridge Inspection Robot Deployment Systems (BIRDS)


Media is loading

Webinar Date

26 June 2024, 10:00am


To meet federal requirements for new data collection, Bridge Inspection Robot Deployment Systems (BIRDS) at the INSPIRE University Transportation Center expand their capabilities for the field tests of real-world bridges. This webinar will introduce the design and testing of new robots that are interactive with bridges for high-quality inspection tasks, which is also applicable to local maintenance, and data fusion for 3D reconstruction to support bridge asset management. Specific strategies for the BIRDS advancement include: (1) A hybrid flying and traversing vehicle is attached to bridge girders as a stationary inspection platform to inspect bridge decks, girders, and piers and collect high-quality data from RGB and infrared cameras as well as a lidar scanner; (2) An unmanned aerial vehicle (UAV) carries and launches a small lightweight crawler to inspect steel members and connections in great details through a microscope or a crack probe; and (3) An UAV is equipped with an aerial manipulator for tele-maintenance, such as screwing and drilling tasks, and nondestructive testing, such as ground penetrating radar, of reinforced concrete members for defect detection and localization. More than 42% of over 617,000 U.S. bridges are 50 years (design life) or older. It is thus imperative to meet more frequent and more rigorous preservation needs to ensure that the aging infrastructure is safe during everyday operations and resilient to increasing catastrophic events associated with climate change. In recent years, inspection data are increasingly being used to support a more proactive approach of asset management to make structures not only safe but also maintainable to minimize life-cycle costs. This broadening of inspection scope requires a significant shift in practice from fully visual inspection to partially visual inspection supplemented with advanced technologies such as remote sensing, nondestructive evaluation, and structural monitoring. These technologies enable the implementation of objective decision-making processes in asset management and the understanding of infrastructure resilience.


Dr. Chen received his Ph.D. degree from the State University of New York at Buffalo in 1992 and joined Missouri University of Science and Technology (Missouri S&T) in 1996 after over three years of bridge design, inspection, and construction practices with Steinman Consulting Engineers in New York City. Since 1996, Dr. Chen has authored or co-authored over 400 technical publications in structural health monitoring (SHM), structural control, structural and robotic dynamics, computational and experimental mechanics, life-cycle assessment and deterioration mitigation of infrastructure, multi-hazards assessment and mitigation, transportation infrastructure preservation and resiliency including 217 journal papers, 5 book chapters, and 28 keynote and invited presentations at international conferences. He chaired the 9th International Conference on Structural Health Monitoring of Intelligent Infrastructure (SHMII-9), St. Louis, Missouri, August 4-7, 2019. He has been granted with one patent on distributed coax cable strain/crack sensors and two patents on enamel coating of steel reinforcing bars for corrosion protection and steel-concrete bond strength. He received the 2019 international SHM Person of the Year award, the 1998 National Science Foundation CAREER Award, the 2004 Academy of Civil Engineers Faculty Achievement Award, and the 2009, 2011, and 2013 Missouri S&T Faculty Research Awards. In 2016, he was nominated and inducted into the Academy of Civil Engineers at Missouri S&T and became an honorary member of Chi Epsilon. He is a Fellow of American Society of Civil Engineers (ASCE), Structural Engineering Institute (SEI), and the International Society for Structural Health Monitoring of Intelligent Infrastructure (ISHMII). He is a Section Editor of the Intelligent Sensors, Associate Editor of the Journal of Civil Structural Health Monitoring, Associate Editor of Advances in Bridge Engineering, Editorial Board Member of Advances in Structural Engineering, and Vice President of the U.S. Panel on Structural Control and Monitoring.


Civil, Architectural and Environmental Engineering

Research Center/Lab(s)

INSPIRE - University Transportation Center

Document Type

Video - Presentation

Document Version

Final Version

File Type





© 2024 Missouri University of Science and Technology, All rights reserved.

This document is currently not available here.