Description
A typical human eye will respond to wavelengths from approximately 400 to 700 nm. A hyperspectral camera can extend the wavelength to as high as 2500 nm. This extension will allow engineers to find objects, identify materials, and detect processes on structural surface, which cannot be done with visual inspection.
This project aims to develop an open-source catalogue of concrete and steel surfaces and their spectral/spatial features (discoloration, characteristic wavelength, roughness, texture, shape, etc.), extract spatial/spectral features of hyperspectral images, and develop/train a multi-class classification or regression classifier through machine learnings (supervised and/or semi-supervised), and validate the classifier as a decision-making tool for the assessment of concrete crack and degradation processes, in-situ concrete properties, and corrosion process in steel bridges.
Location
Rolla, Missouri
Presentation Date
14 Aug 2018, 11:00 am - 11:30 am
Meeting Name
INSPIRE-UTC 2018 Annual Meeting
Department(s)
Civil, Architectural and Environmental Engineering
Document Type
Presentation
Document Version
Final Version
File Type
text
Language(s)
English
Included in
Hyperspectral Image Analysis for Mechanical and Chemical Properties of Concrete and Steel Surfaces
Rolla, Missouri
A typical human eye will respond to wavelengths from approximately 400 to 700 nm. A hyperspectral camera can extend the wavelength to as high as 2500 nm. This extension will allow engineers to find objects, identify materials, and detect processes on structural surface, which cannot be done with visual inspection.
This project aims to develop an open-source catalogue of concrete and steel surfaces and their spectral/spatial features (discoloration, characteristic wavelength, roughness, texture, shape, etc.), extract spatial/spectral features of hyperspectral images, and develop/train a multi-class classification or regression classifier through machine learnings (supervised and/or semi-supervised), and validate the classifier as a decision-making tool for the assessment of concrete crack and degradation processes, in-situ concrete properties, and corrosion process in steel bridges.