Location

San Diego, California

Session Start Date

5-24-2010

Session End Date

5-29-2010

Abstract

This paper describes the ground motion selection process and reports observed seismic site response and SFSI effects during a dynamic centrifuge test (Test-1). The centrifuge test is the first in a series of tests examining the effects of SFSI in dense urban environments. The objective of Test-1 is to examine SFSI effects for two structures that are located a significant distance apart and essentially isolated. The model structures represent a three-story building founded on spread footings and a nine-story structure founded on a threestory basement. The structures are sited on a dry, dense bed of Nevada Sand. The centrifuge model is subjected to a series of shaking events that represent near-fault and “ordinary” ground motions at a site in Los Angeles. Results show that site periods degrade as ground motion intensity increases with more pronounced degradation observed for near-fault ground motions as compared with ordinary ground motions. Additionally, the results indicate the importance of kinematic effects of embedded structures when considering SFSI effects.

Department(s)

Civil, Architectural and Environmental Engineering

Appears In

International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics

Meeting Name

Fifth Conference

Publisher

Missouri University of Science and Technology

Publication Date

5-24-2010

Document Version

Final Version

Rights

© 2010 Missouri University of Science and Technology, All rights reserved.

Document Type

Article - Conference proceedings

File Type

text

Language

English

Share

COinS
 
May 24th, 12:00 AM May 29th, 12:00 AM

Earthquake Input Motions and Seismic Site Response in a Centrifuge Test Examining SFSI Effects

San Diego, California

This paper describes the ground motion selection process and reports observed seismic site response and SFSI effects during a dynamic centrifuge test (Test-1). The centrifuge test is the first in a series of tests examining the effects of SFSI in dense urban environments. The objective of Test-1 is to examine SFSI effects for two structures that are located a significant distance apart and essentially isolated. The model structures represent a three-story building founded on spread footings and a nine-story structure founded on a threestory basement. The structures are sited on a dry, dense bed of Nevada Sand. The centrifuge model is subjected to a series of shaking events that represent near-fault and “ordinary” ground motions at a site in Los Angeles. Results show that site periods degrade as ground motion intensity increases with more pronounced degradation observed for near-fault ground motions as compared with ordinary ground motions. Additionally, the results indicate the importance of kinematic effects of embedded structures when considering SFSI effects.