Location
San Diego, California
Presentation Date
29 Mar 2001, 10:30 am - 11:15 am
Abstract
The effects of liquefaction on deep foundations are very damaging and costly, and they keep recurring in many earthquakes. The first part of the paper reviews the field experience of deep foundations affected by liquefaction during earthquakes in the last few decades, as well as the main lessons learned. The second part of the paper presents results of physical modeling of deep foundations in the presence of liquefaction conducted mostly in the U.S. and Japan in the 1990’s, with emphasis on the work done by the authors and others at the 100 g-ton RPI centrifuge. Centrifuge models of instrumented single piles and pile groups embedded in both level and sloping liquefiable soil deposits have been excited in-flight by a suitable base acceleration. End-bearing and floating piles with and without a pile cap, with or without a mass above ground, free at the top or connected to a lateral or rotational spring to simulate the superstructure's stiffness, with the foundation embedded in two- or three-layer soil profiles, have been tested. Tests with a mass above ground have allowed backfiguring the degradation of the lateral resistance of the loose saturated sand against the pile as the soil liquefies, while tests in sloping ground without a mass have allowed studying the effect of lateral spreading. Interpretations of these centrifuge experiments and their relation to field observations, soil properties, theory and analytical procedures are also discussed.
Department(s)
Civil, Architectural and Environmental Engineering
Meeting Name
4th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics
Publisher
University of Missouri--Rolla
Document Version
Final Version
Rights
© 2001 University of Missouri--Rolla, All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Document Type
Article - Conference proceedings
File Type
text
Language
English
Recommended Citation
Dobry, Ricardo and Abdoun, Tarek, "Recent Studies on Seismic Centrifuge Modeling of Liquefaction and Its Effects on Deep Foundations" (2001). International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. 2.
https://scholarsmine.mst.edu/icrageesd/04icrageesd/session16/2
Included in
Recent Studies on Seismic Centrifuge Modeling of Liquefaction and Its Effects on Deep Foundations
San Diego, California
The effects of liquefaction on deep foundations are very damaging and costly, and they keep recurring in many earthquakes. The first part of the paper reviews the field experience of deep foundations affected by liquefaction during earthquakes in the last few decades, as well as the main lessons learned. The second part of the paper presents results of physical modeling of deep foundations in the presence of liquefaction conducted mostly in the U.S. and Japan in the 1990’s, with emphasis on the work done by the authors and others at the 100 g-ton RPI centrifuge. Centrifuge models of instrumented single piles and pile groups embedded in both level and sloping liquefiable soil deposits have been excited in-flight by a suitable base acceleration. End-bearing and floating piles with and without a pile cap, with or without a mass above ground, free at the top or connected to a lateral or rotational spring to simulate the superstructure's stiffness, with the foundation embedded in two- or three-layer soil profiles, have been tested. Tests with a mass above ground have allowed backfiguring the degradation of the lateral resistance of the loose saturated sand against the pile as the soil liquefies, while tests in sloping ground without a mass have allowed studying the effect of lateral spreading. Interpretations of these centrifuge experiments and their relation to field observations, soil properties, theory and analytical procedures are also discussed.