Location
San Diego, California
Presentation Date
30 Mar 2001, 4:30 pm - 6:30 pm
Abstract
In this study, a numerical method for soil-pile interaction problems in multi-layered half-plane is developed in frequency domain using FE-BE coupling technique. The soil-pile interaction system is divided into two parts, so-called near field and far field. In the near field, beam elements are used for modeling pile and plane-strain finite elements for surrounding soil media. Also, a superstructure is considered as a lumped mass on a pile. In the far field, layered soil media is modeled by boundary element formulation using the dynamic fundamental solution. Then, these two fields are assembled using FE-BE coupling technique. This coupled numerical method automatically satisfies the radiation conditions because the far field boundary element formulation can handle the radiation conditions in a half plane. Additionally, the difference of relative displacement at the interface between soil and pile is considered by applying interface spring elements. In order to verify the proposed method for soil-pile interaction system, the dynamic responses of a pile in a multi-layered half-plane are performed and the numerical results are compared with the measured values from experiments. It is shown that the developed method can be an efficient numerical tool to solve the dynamic response of a pile buried in a multi-layered half plane.
Department(s)
Civil, Architectural and Environmental Engineering
Meeting Name
4th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics
Publisher
University of Missouri--Rolla
Document Version
Final Version
Rights
© 2001 University of Missouri--Rolla, All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Document Type
Article - Conference proceedings
File Type
text
Language
English
Recommended Citation
Kim, Moon Kyum; Lim, Yun Mook; Kim, Min Kyu; and Cho, Seok Ho, "Soil-Pile Interaction Analysis using FE-BE Coupling in Frequency Domain" (2001). International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. 32.
https://scholarsmine.mst.edu/icrageesd/04icrageesd/session06/32
Included in
Soil-Pile Interaction Analysis using FE-BE Coupling in Frequency Domain
San Diego, California
In this study, a numerical method for soil-pile interaction problems in multi-layered half-plane is developed in frequency domain using FE-BE coupling technique. The soil-pile interaction system is divided into two parts, so-called near field and far field. In the near field, beam elements are used for modeling pile and plane-strain finite elements for surrounding soil media. Also, a superstructure is considered as a lumped mass on a pile. In the far field, layered soil media is modeled by boundary element formulation using the dynamic fundamental solution. Then, these two fields are assembled using FE-BE coupling technique. This coupled numerical method automatically satisfies the radiation conditions because the far field boundary element formulation can handle the radiation conditions in a half plane. Additionally, the difference of relative displacement at the interface between soil and pile is considered by applying interface spring elements. In order to verify the proposed method for soil-pile interaction system, the dynamic responses of a pile in a multi-layered half-plane are performed and the numerical results are compared with the measured values from experiments. It is shown that the developed method can be an efficient numerical tool to solve the dynamic response of a pile buried in a multi-layered half plane.