Location
San Diego, California
Presentation Date
30 Mar 2001, 10:30 am - 12:30 pm
Abstract
In this paper, the equivalent-linear method is used for three-dimensional seismic response analyses of concrete-faced rockfill dams (CFRDs). Different combinations of various parameters such as small-strain shear modulus, strain-dependent patterns of modulus and hysteretic damping, are considered to systematically investigate the effects of dynamic properties of rockfill-type coarse-grained materials on seismic dynamic response of CFRDs. It is concluded that the nonlinearity of embankment material has a significant effect on both vibration characteristics and seismic response behavior of CFRDs. Numerical results presented are instructive to gain a better understanding on earthquake-resistant behavior of CFRDs and the effects of dynamic properties of rockfills.
Department(s)
Civil, Architectural and Environmental Engineering
Meeting Name
4th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics
Publisher
University of Missouri--Rolla
Document Version
Final Version
Rights
© 2001 University of Missouri--Rolla, All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Document Type
Article - Conference proceedings
File Type
text
Language
English
Recommended Citation
Wu, Xingzheng; Luan, Maotian; and Xin, Junxia, "Effects of Dynamic Properties of Rockfill Materials on Seismic Response of Concrete-Faced Rockfill Dams" (2001). International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. 16.
https://scholarsmine.mst.edu/icrageesd/04icrageesd/session05/16
Included in
Effects of Dynamic Properties of Rockfill Materials on Seismic Response of Concrete-Faced Rockfill Dams
San Diego, California
In this paper, the equivalent-linear method is used for three-dimensional seismic response analyses of concrete-faced rockfill dams (CFRDs). Different combinations of various parameters such as small-strain shear modulus, strain-dependent patterns of modulus and hysteretic damping, are considered to systematically investigate the effects of dynamic properties of rockfill-type coarse-grained materials on seismic dynamic response of CFRDs. It is concluded that the nonlinearity of embankment material has a significant effect on both vibration characteristics and seismic response behavior of CFRDs. Numerical results presented are instructive to gain a better understanding on earthquake-resistant behavior of CFRDs and the effects of dynamic properties of rockfills.