Location
San Diego, California
Presentation Date
30 Mar 2001, 10:30 am - 12:30 pm
Abstract
This paper presents the mathematical formulation of the nonlinear multiphase dynamic model meant for porous media, obtained by applying the finite transformation assumption. This assumption is appropriate when large motions take place either during mass wasting processes, such as large slumps and earthflows, or during earthquake events when site liquefaction occurs and results for instance in large irrecoverable settlements or lateral spreads. The weak formulation and numerical implementation of the dynamic model uses the mesh-free h-p clouds method, which is based on the more general Partition of Unity Method. The mesh-free numerical methods seem indeed to be more appropriate for large transformation problems, where geometry may change in an important manner during simulation, as usual mesh constraints no longer exist. The numerical simulations of observed liquefaction-induced lateral spreads, performed with the proposed model are not presented in this paper.
Department(s)
Civil, Architectural and Environmental Engineering
Meeting Name
4th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics
Publisher
University of Missouri--Rolla
Document Version
Final Version
Rights
© 2001 University of Missouri--Rolla, All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Document Type
Article - Conference proceedings
File Type
text
Language
English
Recommended Citation
Foerster, E. and Modaressi, H., "Large Motion Assessment in Soils Under Dynamic Loading" (2001). International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. 15.
https://scholarsmine.mst.edu/icrageesd/04icrageesd/session05/15
Included in
Large Motion Assessment in Soils Under Dynamic Loading
San Diego, California
This paper presents the mathematical formulation of the nonlinear multiphase dynamic model meant for porous media, obtained by applying the finite transformation assumption. This assumption is appropriate when large motions take place either during mass wasting processes, such as large slumps and earthflows, or during earthquake events when site liquefaction occurs and results for instance in large irrecoverable settlements or lateral spreads. The weak formulation and numerical implementation of the dynamic model uses the mesh-free h-p clouds method, which is based on the more general Partition of Unity Method. The mesh-free numerical methods seem indeed to be more appropriate for large transformation problems, where geometry may change in an important manner during simulation, as usual mesh constraints no longer exist. The numerical simulations of observed liquefaction-induced lateral spreads, performed with the proposed model are not presented in this paper.