Location

San Diego, California

Session Start Date

3-26-2001

Session End Date

3-31-2001

Abstract

The combined San Pedro Bay, California Ports (Long Beach and Los Angeles) have been developed mostly by placing dredged material behind rock dikes to create useable land and the wharfs constructed over the rock dikes. An overview of the stability analysis of the dikes was presented in a 1991 paper that summarized slope stability and seismic criteria prior to 1991. Since that time, deeper channel depths, higher seismic criteria, and higher seismic survivability expectations by the users have resulted in higher levels of analysis. This paper provides an update of a paper presented in 1991 and presents data regarding slope stability finite element/difference method (FEM) analysis completed by different investigators that included the contribution of the wharf piles that extend through the rock dikes to slope stability and reduction of deformation. The conclusions reached and statements made in this paper are solely those of the authors and do not necessarily represent the opinions of other parties, firms, or ports in any of the projects referenced.

Department(s)

Civil, Architectural and Environmental Engineering

Appears In

International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics

Meeting Name

Fourth Conference

Publisher

University of Missouri--Rolla

Publication Date

3-26-2001

Document Version

Final Version

Rights

© 2001 University of Missouri--Rolla, All rights reserved.

Document Type

Article - Conference proceedings

File Type

text

Language

English

Share

COinS
 
Mar 26th, 12:00 AM Mar 31st, 12:00 AM

Review of Slope Stability Analysis in the Ports of Long Beach and Los Angeles

San Diego, California

The combined San Pedro Bay, California Ports (Long Beach and Los Angeles) have been developed mostly by placing dredged material behind rock dikes to create useable land and the wharfs constructed over the rock dikes. An overview of the stability analysis of the dikes was presented in a 1991 paper that summarized slope stability and seismic criteria prior to 1991. Since that time, deeper channel depths, higher seismic criteria, and higher seismic survivability expectations by the users have resulted in higher levels of analysis. This paper provides an update of a paper presented in 1991 and presents data regarding slope stability finite element/difference method (FEM) analysis completed by different investigators that included the contribution of the wharf piles that extend through the rock dikes to slope stability and reduction of deformation. The conclusions reached and statements made in this paper are solely those of the authors and do not necessarily represent the opinions of other parties, firms, or ports in any of the projects referenced.