Location
San Diego, California
Presentation Date
30 Mar 2001, 1:30 pm - 3:30 pm
Abstract
Laboratory-determined soil dynamic properties are always (to different degrees) affected by sample disturbance, scale effects, deficient modeling of in situ conditions, and so on. The installation of vertical arrays of strong motion instruments and the ensuing records obtained during various seismic events, have opened the opportunity to explore other alternatives to evaluate soil dynamic properties by solving the inverse problem. In this paper, an analytical procedure that allows the solution of this problem in a simple way is presented and applied to a case history in Mexico City. The model assumes 1-D propagation of shear waves throughout homogeneous viscoelastic soil deposits. The results obtained here are compared with the velocities measured by means of field studies at Central de Abasto Oficinas (CAO) site with a P-S logging system. These comparisons show the potential of this procedure.
Department(s)
Civil, Architectural and Environmental Engineering
Meeting Name
4th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics
Publisher
University of Missouri--Rolla
Document Version
Final Version
Rights
© 2001 University of Missouri--Rolla, All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Document Type
Article - Conference proceedings
File Type
text
Language
English
Recommended Citation
Carvajal U., Juan C.; Taboada U., Víctor M.; and Romo O., Miguel P., "Evaluation of Mexico City Clay Dynamic Properties Using a Parameter Identification Approach" (2001). International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. 25.
https://scholarsmine.mst.edu/icrageesd/04icrageesd/session03/25
Included in
Evaluation of Mexico City Clay Dynamic Properties Using a Parameter Identification Approach
San Diego, California
Laboratory-determined soil dynamic properties are always (to different degrees) affected by sample disturbance, scale effects, deficient modeling of in situ conditions, and so on. The installation of vertical arrays of strong motion instruments and the ensuing records obtained during various seismic events, have opened the opportunity to explore other alternatives to evaluate soil dynamic properties by solving the inverse problem. In this paper, an analytical procedure that allows the solution of this problem in a simple way is presented and applied to a case history in Mexico City. The model assumes 1-D propagation of shear waves throughout homogeneous viscoelastic soil deposits. The results obtained here are compared with the velocities measured by means of field studies at Central de Abasto Oficinas (CAO) site with a P-S logging system. These comparisons show the potential of this procedure.