Location
San Diego, California
Presentation Date
30 Mar 2001, 10:30 am - 12:30 pm
Abstract
In this study, deformation characteristics of hydraulic-tilled cohesionless soils in Korea were investigated using resonant column tests. Seven representative hydraulic-tilled soil samples, which mostly classified as SM, SP or SP-SM, were collected along the coastal area in Korea, and the deformational characteristics at small to medium strains (10-4 % ~ 0.1 %) were investigated. The predicting equation of small-strain shear modulus, Gmax was suggested using Hardin model. At strains above elastic threshold, the variations of shear modulus (G) and damping ratio (D) with strain amplitude were investigated at various densities and confining pressures. The normalized modulus reduction curve (G/Gmax- log γ) was almost independent of density for a given soil but it was affected by confining pressure. The G/Gmax- log γ curve of hydraulic filled soils moves to the right as confining pressure increases. The representative modulus reduction curves of hydraulic-tilled soils in Korea were determined for 5 confining pressure levels using Ramberg-Osgood model and the proposed curve was composed and compared with the well-known modulus reduction curves. The variations in damping ratio with strain amplitude were also determined and the representative damping curves were proposed for 5 confining pressure levels. The proposed modulus reduction and damping ratio curves would be used as a valuable database for the site response analysis during earthquake.
Department(s)
Civil, Architectural and Environmental Engineering
Meeting Name
4th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics
Publisher
University of Missouri--Rolla
Document Version
Final Version
Rights
© 2001 University of Missouri--Rolla, All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Document Type
Article - Conference proceedings
File Type
text
Language
English
Recommended Citation
Kim, Dong-Soo and Choo, Yun-Wook, "Deformation Characteristics of Hydraulic-Filled Choesionless Soils in Korea" (2001). International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. 9.
https://scholarsmine.mst.edu/icrageesd/04icrageesd/session02/9
Included in
Deformation Characteristics of Hydraulic-Filled Choesionless Soils in Korea
San Diego, California
In this study, deformation characteristics of hydraulic-tilled cohesionless soils in Korea were investigated using resonant column tests. Seven representative hydraulic-tilled soil samples, which mostly classified as SM, SP or SP-SM, were collected along the coastal area in Korea, and the deformational characteristics at small to medium strains (10-4 % ~ 0.1 %) were investigated. The predicting equation of small-strain shear modulus, Gmax was suggested using Hardin model. At strains above elastic threshold, the variations of shear modulus (G) and damping ratio (D) with strain amplitude were investigated at various densities and confining pressures. The normalized modulus reduction curve (G/Gmax- log γ) was almost independent of density for a given soil but it was affected by confining pressure. The G/Gmax- log γ curve of hydraulic filled soils moves to the right as confining pressure increases. The representative modulus reduction curves of hydraulic-tilled soils in Korea were determined for 5 confining pressure levels using Ramberg-Osgood model and the proposed curve was composed and compared with the well-known modulus reduction curves. The variations in damping ratio with strain amplitude were also determined and the representative damping curves were proposed for 5 confining pressure levels. The proposed modulus reduction and damping ratio curves would be used as a valuable database for the site response analysis during earthquake.