Location
San Diego, California
Presentation Date
30 Mar 2001, 10:30 am - 12:30 pm
Abstract
The Canadian Light Source (CLS) is a third generation synchrotron that will be capable of generating a wide spectrum of electromagnetic radiation used in the study of the atomic and sub-atomic structure of materials. The CLS facility will feature a 50 m diameter vacuum storage ring used to contain a highly focused stream of electrons. The accuracy required in aiming the electron beam and resulting radiation necessitates very stringent operational tolerances on foundation vibrations, with peak dynamic displacements being limited to less than 0.35 μm. To assess the level of seismic excitation at the site due to traffic on an adjacent roadway, an extensive “green field” ground vibration monitoring program was carried out. The analytical model used to calculate the dynamic characteristics of the foundation system is described. A Fourier analysis approach was used to predict the response of the foundation to the ground-induced vibrations. The results of the analysis showed that the proposed foundation system would perform satisfactorily.
Department(s)
Civil, Architectural and Environmental Engineering
Meeting Name
4th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics
Publisher
University of Missouri--Rolla
Document Version
Final Version
Rights
© 2001 University of Missouri--Rolla, All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Document Type
Article - Conference proceedings
File Type
text
Language
English
Recommended Citation
El Naggar, M. Hesham and Sparling, Bruce F., "Vibration of Synchrotron Foundation Due to Ground-Transmitted Excitation" (2001). International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. 18.
https://scholarsmine.mst.edu/icrageesd/04icrageesd/session02/18
Included in
Vibration of Synchrotron Foundation Due to Ground-Transmitted Excitation
San Diego, California
The Canadian Light Source (CLS) is a third generation synchrotron that will be capable of generating a wide spectrum of electromagnetic radiation used in the study of the atomic and sub-atomic structure of materials. The CLS facility will feature a 50 m diameter vacuum storage ring used to contain a highly focused stream of electrons. The accuracy required in aiming the electron beam and resulting radiation necessitates very stringent operational tolerances on foundation vibrations, with peak dynamic displacements being limited to less than 0.35 μm. To assess the level of seismic excitation at the site due to traffic on an adjacent roadway, an extensive “green field” ground vibration monitoring program was carried out. The analytical model used to calculate the dynamic characteristics of the foundation system is described. A Fourier analysis approach was used to predict the response of the foundation to the ground-induced vibrations. The results of the analysis showed that the proposed foundation system would perform satisfactorily.