Location
San Diego, California
Presentation Date
29 Mar 2001, 4:00 pm - 6:00 pm
Abstract
In recent years, a significant research effort has been focused on assessing the performance of structures founded on potentially liquefiable materials. While significant progress has been made on predictive tools for cases in which large deformations are likely, the ability to accurately and reliably predict small to moderate lateral deformations (<1m) has proven more elusive. As a result, there is a universal need for high quality, element-level laboratory test data to calibrate and validate constitutive laws and numerical models for predicting the deformation of soil with limited liquefaction potential. To address this increasingly urgent need, a comprehensive cyclic simple shear testing program on liquefiable sands has been undertaken using the UC Berkeley Bi-directional Simple Shear Device. Many of the tests performed have new and innovative aspects that can provide information and insight into the behavior of soils showing limited deformation potential. Descried in this paper are results from a Kα test series, which replicates sloping ground conditions, and a newly developed and innovative “fabric” test series, which examines the influence of previous loading history on soil fabric and behavior.
Department(s)
Civil, Architectural and Environmental Engineering
Meeting Name
4th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics
Publisher
University of Missouri--Rolla
Document Version
Final Version
Rights
© 2001 University of Missouri--Rolla, All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Document Type
Article - Conference proceedings
File Type
text
Language
English
Recommended Citation
Kammerer, A. M.; Wu, J.; Riemer, M.; Pestana, J. M.; and Seed, R. B., "Use of Cyclic Simple Shear Testing in Evaluation of the Deformation Potential of Liquefiable Soils" (2001). International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. 16.
https://scholarsmine.mst.edu/icrageesd/04icrageesd/session01/16
Included in
Use of Cyclic Simple Shear Testing in Evaluation of the Deformation Potential of Liquefiable Soils
San Diego, California
In recent years, a significant research effort has been focused on assessing the performance of structures founded on potentially liquefiable materials. While significant progress has been made on predictive tools for cases in which large deformations are likely, the ability to accurately and reliably predict small to moderate lateral deformations (<1m) has proven more elusive. As a result, there is a universal need for high quality, element-level laboratory test data to calibrate and validate constitutive laws and numerical models for predicting the deformation of soil with limited liquefaction potential. To address this increasingly urgent need, a comprehensive cyclic simple shear testing program on liquefiable sands has been undertaken using the UC Berkeley Bi-directional Simple Shear Device. Many of the tests performed have new and innovative aspects that can provide information and insight into the behavior of soils showing limited deformation potential. Descried in this paper are results from a Kα test series, which replicates sloping ground conditions, and a newly developed and innovative “fabric” test series, which examines the influence of previous loading history on soil fabric and behavior.